
Neurocomputing 398 (2020) 293–303 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Generative collaborative networks for single image super-resolution 

Mohamed El Amine Seddik 

a , b , ∗, Mohamed Tamaazousti a , John Lin 

a , c 

a CEA/LIST/DIASI/LVIC, Gif-sur-Yvette F-91191, France 
b CentraleSupelec/L2S, 3 rue Joliot Curie, Gif-sur-Yvette 91192, France 
c ISIT-UMR6284 CNRS/Auvergne University, Clermont-Ferrand, France 

a r t i c l e i n f o 

Article history: 

Received 31 August 2018 

Revised 3 February 2019 

Accepted 27 February 2019 

Available online 19 October 2019 

Keywords: 

Super-resolution 

Deep learning 

GANs 

Perceptual loss 

a b s t r a c t 

A common issue of deep neural networks-based methods for the problem of Single Image Super- 

Resolution (SISR), is the recovery of finer texture details when super-resolving at large upscaling factors. 

This issue is particularly related to the choice of the objective loss function. In particular, recent works 

proposed the use of a VGG loss which consists in minimizing the error between the generated high res- 

olution images and ground-truth in the feature space of a Convolutional Neural Network (VGG19), pre- 

trained on the very “large” ImageNet dataset. When considering the problem of super-resolving images 

with a distribution “far” from the ImageNet images distribution ( e.g., satellite images), their proposed 

fixed VGG loss is no longer relevant. In this paper, we present a general framework named Generative 

Collaborative Networks (GCN), where the idea consists in optimizing the generator (the mapping of inter- 

est) in the feature space of a features extractor network. The two networks (generator and extractor) are 

collaborative in the sense that the latter “helps” the former, by constructing discriminative and relevant 

features (not necessarily fixed and possibly learned mutually with the generator). We evaluate the GCN 

framework in the context of SISR, and we show that it results in a method that is adapted to super- 

resolution domains that are “far” from the ImageNet domain. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

The super-resolution problem ( P sr ) consists in estimating a

igh resolution (HR) image from its corresponding low resolution

LR) counterpart. P sr finds a wide range of applications and has

ttracted much attention within the community of computer

ision [2–4] . Generally, the considered optimization objective of

upervised methods to solve P sr is the minimization of the mean

quared error (MSE) between the recovered HR image and ground-

ruth. This class of methods are known to be suboptimal to recon-

truct texture details at large upscaling factors. In fact, since MSE

onsists in a pixel-wise images differences, its ability to recover

igh texture details is limited [1,5–7] . Furthermore, the minimiza-

ion of MSE maximizes the Peak Signal-to-Noise-Ratio (PSNR) met-

ic, which is commonly used for the evaluation of P sr methods [8] .

In order to correctly recover finer texture details when super-

esolving at large upscaling factors, a recent (state-of-the-art)

ork [1] defined a perceptual loss which is a combination of an

dversarial loss and a VGG loss. The former encourages solutions

erceptually hard to distinguish from the HR ground-truth images,
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E-mail addresses: mohamedelamine.seddik@cea.fr (M.E.A. Seddik),

ohamed.tamaazousti@cea.fr (M. Tamaazousti), john.lin@cea.fr (J. Lin). 

p  

s  

w  

m  

ttps://doi.org/10.1016/j.neucom.2019.02.068 

925-2312/© 2019 Published by Elsevier B.V. 
hile the latter consists in using high-level feature maps of the

GG network [9] pre-trained on ImageNet [10] . When considering

he problem of super-resolving images from a target-domain differ-

nt than ImageNet ( e.g., satellite images), the features produced by

he pre-trained VGG network on the source domain (ImageNet) are

uboptimal and no longer relevant for the target domain. In fact,

ransfer-learning methods are known to be efficient only when the

ource and target domains are close enough [11–13] . In this work,

e present a general framework which we call Generative Collabo-

ative Networks (GCN), where the main idea consists in optimizing

he generator ( i.e. , the mapping of interest) in the feature space of

 network which we shall refer to as a features extractor network.

he two networks are said to be collaborative in the sense that the

eatures extractor network “helps” the generator by constructing

here, learning) relevant features. In particular, we applied our

ramework to the problem of single image super-resolution, and

e demonstrated that it results in a method that is more adapted

compared to SRGAN [1] ) when super-resolving images from a

omain that is “far” from the ImageNet domain. 

The rest of the paper is organized as follows. In Section 2 we

resent the state of the art on the problem of single image

uper-resolution. We describe our Generative Collaborative Net-

orks framework in Section 3 . Section 4 presents our proposed

ethod for the super resolution task and related experimental

https://doi.org/10.1016/j.neucom.2019.02.068
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.02.068&domain=pdf
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results. Section 5 provides some discussions and concludes the

article. 

2. Related work 

The problem of super-resolution has been tackled with a large

range of approaches. In the following, we will consider the prob-

lem of single image super-resolution ( P sisr ) and thus the ap-

proaches that recover HR images from multiple images [14,15] are

out of the scope of this paper. First approaches to solve P sisr were

filtering-based methods ( e.g. , linear, bicubic or Lanczos [16] filter-

ing). Even if these methods are generally very fast, they usually

yield overly smooth textures solutions [6] . Most promising and

powerful approaches are learning-based methods which consist in

establishing a mapping between LR images and their HR coun-

terparts (supposed to be known). Initial work was proposed by

Freeman et al. [17] . This method has been improved in [18,19] by

using compressed sensing approaches. Patch-based methods com-

bined with machine learning algorithms were also proposed: in

[20,21] upsampling a LR image by finding similar LR training

patches in a low dimensional space (using neighborhood embed-

ding approaches) and a combination of the HR patches counter-

parts are used to reconstruct HR patches. A more general mapping

of example pairs (using kernel ridge regression) was formulated by

Kim and Kwon [22] . Similar approaches used Gaussian process re-

gression [23] , trees [24] or Random Forests [25] to solve the re-

gression problem introduced in [22] . An ensemble method-based

approach was adopted in [26] by learning multiple patch regres-

sors and selecting the most relevant ones during the test phase. 

Convolutional neural networks (CNN)-based approaches outper-

formed other P sisr approaches, by showing excellent performance.

Authors in [27] used an encoded sparse representation as a prior

in a feed-forward CNN, based on the learned iterative shrinkage

and thresholding algorithm of [28] . An end-to-end trained three

layer deep fully convolutional network, based on bicubic interpola-

tion to upscale the input images, was used in [29,30] and achieved

good P sisr performances. Further works suggested that enabling the

network to directly learn the upscaling filters, can remarkably in-

crease performance in terms of both time complexity and accuracy

[31,32] . In order to recover visually more convincing HR images,

Johnson et al. [33] and Bruna et al. [34] used a closer loss func-

tion to perceptual similarity. More recently, authors in [1] defined

a perceptual loss which is a combination of an adversarial loss and

a VGG loss. The latter consists in minimizing the error between

the recovered HR image and ground-truth in the high-level fea-

ture space of the pre-trained VGG network [9] on ImageNet [10] .

This method notably outperformed CNN-based methods for the

problem P sisr . 

3. Generative collaborative networks 

3.1. Proposed framework 

Consider a problem P of learning a mapping function F , pa-

rameterized by θF , that transforms images from a domain X to a

domain Y, given a training set of N pairs { (x i , y i ) } N i =1 
∈ X × Y . De-

note by p X and p Y the probability distributions respectively over

X and Y . In addition, we introduce a given features extractor func-

tion denoted �, parameterized by θ�, that maps an image y ∈ Y
to a certain euclidean feature space S � of dimensionality d . The

mappings F and � are typically feed-forward Convolutional Neu-

ral Networks. The Generative Collaborative Networks (GCN) frame-

work consists in learning the mapping function F by minimizing

a given loss function 

1 in the space of features S , between the
�

1 � 2 -loss is considered in the following. 

 

 

 

enerated images (through F) and ground-truth. Formally, 

ˆ F = arg min 

θF 

λ1 

N d 

N ∑ 

i =1 

d ∑ 

j=1 

(
� j ( y i ) − � j ( F(x i ) ) 

)2 + λ2 �(θF ) , (1)

here �(θF ) is a certain regularization term (detailed below) on

he weights θF and λ1 and λ2 are summation coefficients. The two

etworks F and � are collaborative in the sense that, the lat-

er learns specific features of the domain Y and “helps” the for-

er, as it is learned in the space S �. An important question arises

bout how to learn the mapping �. In following, we describe dif-

erent classes of methods depending on the learning strategy of �.

n fact, the features extractor function � can take different forms

nd be learned by different strategies. In particular, we distinguish

wo learning strategies (illustrated in Fig. 2 ), which we shall call

isjoint-learning and joint-learning . The four following cases belong

o the disjoint-learning strategy: 

(1.a) When � is the identity operator ( � = Id). In that case, the

objective in Eq. (1) becomes a simple pixel-wise MSE loss

function. We refer to this class of methods by P/ mse . 

(1.b) When � corresponds to a random feature map neural net-

work, that is to say, the weights θ� are set randomly ac-

cording to a given distribution μ. We refer to this class of

methods by P/ ran . 

(1.c) When � is a part of a model that solves a reconstruc-

tion problem (jointly with an auxiliary mapping function

� : S � → Y), by minimizing the pixel-wise � 2 -loss func-

tion between the reconstructed images (through �) and

ground-truth: 

( ̂  θ�, _ ) = arg min 

(θ�,θ� ) 

1 

N dim (Y) 

N ∑ 

i =1 

dim (Y) ∑ 

j=1 

×
(
(y i ) j − (� ◦ �(y i )) j 

)2 
. (2)

Notably, this strategy allows for the learning of reconstruc-

tion features which are different from classification-based

features. We refer to this class of methods by P/ rec . 

(1.d) When � is trained to solve a multi-label classification prob-

lem [1] , that is to say, when labels are available for the

domain Y . More precisely, it exists a dataset { (y i , c i ) } n i =1 ∈
Y × { 1 , . . . , m } of n images labelled among m classes and �

is learned to minimize the following objective: 

( ̂  θ�, _ ) = arg max 
(θ�,θ� ) 

P { � ◦ �(y i ) = c i | y i ;
i ∈ { 1 , . . . , m } } , (3)

where � : S � → { 1 , . . . , m } . We refer to this class of meth-

ods by P/ cla . 

The features extractor function � can also be trained jointly

ith the desired mapping function F . Indeed, as in the GANs

aradigm, one can use a discriminator to distinguish the gener-

ted images (through F) and ground-truth, and thus learn more

elevant and specific features for the problem of interest P . In par-

icular, the joint-learning strategy contains two cases: 

(2.a) When � is a part of a discriminator . D = � ◦ � : Y → { 0 , 1 }
that classifies the generated images (through F) and ground-

truth. D is optimized in an alternating manner along with F
to solve the adversarial min-max problem [35] : 

min 

θF 
max 

(θ�,θ� ) 
E y ∼p Y [ log � ◦ �(y ) ] 

+ E x ∼p X [ log { 1 − � ◦ � ◦ F(x ) } ] . (4)

The adversarial loss (second term of Eq. (4) ) can thus be

seen as a regularization of the parameters θF by affect-

ing this quantity to �(θF ) in Eq. (1) . This regularization
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Fig. 1. When super-resolving images from a different domain ( e.g. , satellite images on the right) than the ImageNet domain ( e.g. , general objects on the left), the VGG loss 

introduced by Ledig et al. [1] is no longer relevant. We propose a method that outperforms the SRGAN method [1] when super-resolving satellite images. Our method falls 

within a large class of methods which constitutes our proposed Generative Collaborative Networks framework. 

Fig. 2. Overview of the GCN framework with examples of the two learning strategies. The GCN framework consists in optimizing a generator in the feature space of an 

extractor as illustrated in (a) . The extractor can be trained beforehand and used to optimize the generator, which we refer to as disjoint-learning strategy (b) . The extractor 

can also be optimized jointly with the generator, i.e., using a joint-learning strategy (c) . 
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Table 1 

Existent loss functions of the proposed GCN framework. 

Standard methods P/mse P/cla P/rec P/dis P/dis, rec

Existence 
√ 

[5] 
√ 

[41] ✗ ✗ ✗ 

Adversarial methods P/adv , mse P/adv , cla P/adv P/adv , rec

Existence 
√ 

[40] 
√ 

[1] ✗ ✗ 
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2 The considered networks are Squeeze [45] , AlexNet [46] and VGG [9] and 

their “perceptual calibrated” versions which we refer to respectively as Squeeze- 

l, AlexNet-l and VGG-l. See [44] and the provided github project within for further 

details. 
“pushes” the solution of the problem in Eq. (1) to the mani-

fold of the images in the domain Y . We refer to this class of

methods by P/ adv . When λ2 = 0 , we refer to it by P/ dis . 

(2.b) When � is a part of a discriminator and an auto-encoder .

Namely, by optimizing its weights θ� to solve simultane-

ously, an adversarial problem as in Eq. (4) ; through D = �1 ◦
� : Y → { 0 , 1 } , and a reconstruction problem as in Eq. (2) ;

through a mapping �2 : S � → Y . We refer to this class of

methods by P/ adv,rec or P/ dis,rec depending on the value of

λ2 in Eq. (1) . 

3.2. Existing loss functions 

The natural way to learn a mapping from a manifold to an-

other is to use P/ mse methods. It is well known [1,5–7] that

this class of methods lead to overly-smooth and poor perceptual

quality solutions. In order to handle the mentioned perceptual

quality limitation, a variety of methods have been proposed in

the literature. First methods used generative adversarial networks

(GANs) for generating high perceptual quality images [36,37] , style

transfer [38] and inpainting [39] , namely the class of methods

P/ adv with λ1 = 0 . Authors in [40] proposed to use P/ mse with

an adversarial loss ( λ1 > 0 and λ2 > 0) to train a network that

super-resolves face images with large upscaling factors. Authors

in [33,34] and in [41] used P/ cla by considering respectively

� = VGG19 and � = AlexNet networks as fixed features extractors

(learned disjointly from the mapping of interest), which result in a

more perceptually convincing results for both super-resolution and

artistic style-transfer [42,43] . More recently, authors in [1] used

P/ cla,adv by considering � = VGG19 as a fixed features extractor

combined with an adversarial loss ( λ2 > 0). To the best of our

knowledge, as summarized in Table 1 , the use of the other learn-

ing strategies of �; namely (1.c), (2.a) and (2.b), have not been

explored in the literature. We particularly apply these strategies

in the context of Single Image Super-Resolution, which results in

methods that are more suitable (comparing to the SRGAN method

[1] ) to super-resolution domains that differ from the ImageNet

domain (see Figure 1 ). The proposed methods as well as the

corresponding experiments are presented in the following section. 

4. Application of GCN to single image super-resolution 

4.1. Proposed methods 

In this section, we consider the problem of Single Image

Super-Resolution ( P sisr ). In particular, we suppose we are given

N pairs { (I LR 
i 

, I HR 
i 

) } N 
i =1 

of low-resolution images and their high-

resolution counterparts. Recalling our GCN framework (presented

in Section 3 ) the proposed methods for the problem P sisr are:

P sisr rec , P sisr dis , P sisr dis,rec , P sisr adv and P sisr adv,rec . We show

in the following that the most convincing results are given by

P sisr adv,rec . In particular, we show on a dataset of satellite images

(different from the ImageNet domain) that our method P sisr adv,rec

outperforms the SRGAN method [1] by a large margin on the con-

sidered domain. Note that, as our goal is to show the irrelevance of

the VGG loss for some visual domains (different from ImageNet),

we do not consider the well-known SR benchmarks ( e.g. , Set5,
et14, B100, Urban100) for the evaluation, as these benchmarks are

elatively close to the ImageNet domain. The evaluation of the dif-

erent methods is based on perceptual metrics [44] which we recall

n the following section. 

.2. Evaluation metrics 

The evaluation of super-resolution methods (more generally im-

ge regression-based methods) requires comparing visual patterns

hich remains an open problem in computer vision. In fact, classi-

al metrics such as L2/PSNR, SSIM and FSIM often disagree with

uman judgments ( e.g. , blurring causes large perceptual change

ut small L2 change). Thus, the definition of a perceptual metric

hich agrees with humans perception is an important aspect for

he evaluation of P sisr methods. Zhang et al. [44] recently evaluated

eep features across different architectures (Squeeze [45] , AlexNet

46] and VGG [9] ) and tasks (supervised, self-supervised and unsu-

ervised networks) and compared the resulting metrics with tradi-

ional ones. They found that deep features outperform all classical

etrics ( e.g. , L2/PSNR, SSIM and FSIM) by large margins on their

ntroduced dataset. As a consequence, deep networks seem to pro-

ide an embedding of images which agrees surprisingly well with

umans judgments. 

Zhang et al. [44] compute the distance between two images x,

 with a network 2 � in the following way: 

 �(x, y ) = 

∑ 

l 

1 

H l W l 

∑ 

h,w 

‖ w l � (�l (x ) hw 

− �l (y ) hw 

) ‖ 

2 
2 , (5)

here �l ( ·) are the extracted features from layer l and unit-

ormalized in the channel dimension. w l is a re-scaling vector of

he activations channel-wise at layer l. H l and W l are respectively

he height and width of the l th feature map. 

Thus, we compute the perceptual error (PE) of a P sisr method

a mapping F) on a given test-set of N low-resolution images and

heir high-resolution counterparts � = { (I LR 
i 

, I HR 
i 

) } N 
i =1 

as the mean

istances between the generated images (through F) and ground-

ruth as follows: 

E �(�) = 

1 

N 

N ∑ 

i =1 

d �(F(I LR 
i ) , I HR 

i ) . (6)

ote that we use the implementation of [44] to compute the per-

eptual distances d �( · , · ) using six variants which are based on

he networks Squeeze [45] , AlexNet [46] and VGG [9] and their

perceptual calibrated” versions. The best method is considered to

e the one which minimizes the maximum amount of PEs across

ifferent networks � ∈ { Squ, Squ-l, Alex, Alex-l, VGG, VGG-l } . 

.3. Experiments 

The overall goal of this section is to validate our statement

bout the relevance of the VGG loss when super-resolving im-

ges from a different domain than the ImageNet domain. To high-

ight this aspect, we first present the considered datasets, archi-

ectures and training details. Then we select the more appropriate

ethod (across the GCN framework methods) for the P sisr prob-

em based on perceptual metrics [44] . Finally, we compare our pro-

osed method to some baselines and the state-of-the-art SRGAN

ethod [1] , on three different datasets (detailed in the following

ection). We show in particular that our method outperforms SR-

AN on the satellite images domain. 
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Fig. 3. Examples of images from the considered datasets. 
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.3.1. Datasets 

The idea of replacing the MSE pixel-wise content loss on the

mage by a loss function that is closer to perceptual similarity is

ot new. Indeed, [1] defined a VGG loss on the feature map ob-

ained by a specific layer of the pre-trained VGG19 network and

hows that it fixes the inherent problem of overly smooth results

hich comes with the pixel-wise loss. Nevertheless, VGG19 being

rained on ImageNet, their method would not perform particularly

ell on different images, the distribution of which is far away from

hat of ImageNet. Therefore, we propose a similar method where

he difference is that our features extractor is not pre-trained,

ut trained jointly with the generator. This removes the afore-

entioned limitation since the features extractor is trained on the

ame dataset as the generator and thus extract relevant features. 

To show that, we trained our different networks ( i.e., with dif-

erent features extractors) on three distinct datasets (examples of

mages of these datasets are shown in Fig. 3 ): 

• A subset of ImageNet [10] , for which we sampled 70,0 0 0 im-

ages. Since VGG19 was trained on ImageNet for many (more

than 300K) iterations, we expect to have similar or worse re-

sults than the state-of-the-art method SRGAN from [1] on this

database. 

• The Describable Textures Dataset (DTD) [47] , containing 5600 im-

ages of textural patterns. These data are relatively close to Im-

ageNet and we show that our method gives convincing results

relatively close to SRGAN. 

• A dataset containing satellite images 3 , which we generated by

randomly cropping 256 × 256 images on a 7205 × 7205 satel-

lite image which result in 235,183 images. We particularly

show that our method significantly outperforms SRGAN on this

dataset. We refer to this dataset by Sat . 

All experiments are performed with a scale factor of 4 × be-

ween low- and high-resolutions images and the formers are ob-

ained during the training by down-scaling the original images by

 factor 1/4. 

.3.2. Architectures 

Our overall goal is to prove that the proposed GCN frame-

ork, is adapted to train a generative mapping model and that it
3 Can be found in http://www.terracolor.net/sample _ imagery.html . 

p  
urpasses the MSE loss in keeping perceptual similarity in the gen-

rated image (whereas the MSE loss tends to smooth things out

nd lose high frequency details). As opposed to [1] ’s work, our

ramework does not require to have a pre-trained network, like

GG, to extract helpful features for training. In this paper, we focus

n the Super Resolution problem. Therefore, we chose our map-

ing function F , or generator, to be that of Ledig et al. [1] : a feed-

orward CNN parametrized by θF , composed of 10 residual blocks.

hese blocks are made of two convolutional layers with 3 × 3 ker-

els and 64 features maps, each followed by batch normalization

nd PReLU as activation. The image’s size is then increased of a

actor 4 by two trained upsamplings. The architecture of all the

sed discriminators follows the guidelines of Radford et al. [48] as

t is composed of convolutional layers, followed by a batch normal-

zation and a LeakyReLU ( α = 0 . 2 ) activation. This block is repeated

ight times and each time the number of 3 × 3 kernels increases by

 factor 2 (ranging from 64 to 512), a strided convolution is used

o reduce the image resolution by 2. Two dense layers and a sig-

oid activation then return the discrimination probability. In the

ase of an auto-encoder (every Reconstruction problem), we follow

he same architecture for the encoder and a symmetric one for the

ecoder. Fig. 4 depicts an overview of the architectures for both

he generator and the discriminator. 

.3.3. Training details and parameters 

All networks were trained 

4 on a NVIDIA Geoforce GTX 1070

PU using the datasets described in Section 4.3.1 , which do not

ontain the (10 0 0) testing images shown as results. We scaled the

ange of both the LR input images and the HR images to [ −1 , 1] ,

hich explains the tanh activation for the last layer of the gen-

rator. All variants of our networks, which differ in their features

xtractor, were trained from scratch (for the generator and the fea-

ures extractor) with mini batches of 10 images. We used the Adam

ptimizer with a learning rate of 2 · 10 −4 and a decay of 0. The

enerator and the feature extractor are updated alternatively. As

e realized training was stable and quite fast, we trained with

nly 50 0 0 update iterations to pinpoint the best method among

he different GCNs. Finally, the regularization parameters in our

lobal loss are set by default as λ1 = 1 and λ = 10 −3 . As a re-

inder, our goal here is, given a generator architecture (or map-

ing function F), to find the best strategy to train it, following
4 A Keras implementation is provided in https://github.com/melaseddik/GCN . 

http://www.terracolor.net/sample_imagery.html
https://github.com/melaseddik/GCN
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Table 2 

Results of the proposed P sisr methods in terms of traditional metrics (L2 and SSIM) and the perceptual error (PE) given by Eq. (6) on different datasets. As 

we can notice, the method P sisr /adv , rec outperforms the other methods in the datasets ImageNet and Sat, while P sisr /dis, rec gives the best results on DTD. 

Methods Low-level Perceptual metrics 

L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l 

ImageNet P sisr /dis 0.018 0.147 1.606 0.279 1.470 0.398 2.088 0.358 

P sisr /rec 0.020 0.162 1.723 0.301 1.595 0.425 2.243 0.388 

P sisr /dis, rec 0.017 0.147 1.587 0.279 1.420 0.382 2.052 0.353 

P sisr /adv 0.028 0.202 1.820 0.222 1.554 0.322 2.598 0.432 

P sisr /adv , rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340 

DTD P sisr /dis 0.027 0.184 1.873 0.327 1.739 0.440 2.401 0.421 

P sisr /rec 0.027 0.183 1.851 0.320 1.726 0.438 2.398 0.420 

P sisr /dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392 

P sisr /adv 0.036 0.227 2.077 0.281 1.812 0.375 2.770 0.473 

P sisr /adv , rec 0.046 0.236 2.089 0.277 1.793 0.344 2.796 0.481 

Sat P sisr /dis 0.011 0.129 1.484 0.210 1.508 0.356 2.121 0.355 

P sisr /rec 0.060 0.168 1.705 0.245 1.762 0.423 2.260 0.395 

P sisr /dis, rec 0.011 0.138 1.493 0.215 1.435 0.351 2.108 0.372 

P sisr /adv 0.030 0.214 1.719 0.181 1.627 0.306 2.711 0.419 

P sisr /adv , rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344 

Fig. 4. Overview of the used architectures for the generator and the discriminator. We have considered the same architectures as that of Ledig et al. [1] . 
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our GCNs paradigms. The best method is then further compared

to baselines. 

4.3.4. Features extractor selection 

As we said above, we investigated the ability of different

features extractor to construct relevant perceptual feature maps

for training and improving the rendering quality of the gener-

ator. In order to select the best learning strategy given a cer-

tain dataset, we train the generator on each dataset (presented

in Section 4.3.1 ) using the different learning strategies: P sisr / rec ,

P sisr / dis , P sisr / dis,rec , P sisr / adv and P sisr / adv,rec . Note that, the fea-

tures extractor for all the considered methods correspond to the

first layer of the discriminators (or encoder-decoders). In fact, as

the problem P sisr consists in recovering low-level perceptual cues,

we limited our study to the first layer. 

Table 2 summarizes the results of the proposed P sisr methods

in terms of low-level metrics (L2 and SSIM) and perceptual met-

rics [44] which are given by Eq. (6) . We notice from this table

that the method P sisr /adv , rec performs relatively well on the

datasets ImageNet and Sat in terms of perceptual metrics. While

P sisr /dis, rec gives better results on the DTD dataset. The main dif-

ference between these two methods is that the former considers

an adversarial loss on the objective function while the latter does

not consider the adversarial term. This explains the reason why

P /adv , rec does not perform well on DTD. In fact, texture images
sisr 
elong to a complex manifold and their distribution is relatively

ard to fit by a generative model. 

Fig. 5 shows qualitative results of the different proposed meth-

ds on the different presented datasets. Generally, the methods

hich were trained with an additional adversarial loss ( P sisr / adv

nd P sisr / adv,rec ) output images of higher quality (on the datasets

mageNet and Sat) as GANs were introduced to do just so: gener-

te images that follow the distribution of the dataset. Among these

wo adversarial methods, it seems to us (as suggested by the quan-

itative results of Table 2 ) that P sisr / adv,rec (column (c) of Fig. 5 )

s able to detect and render more details, due to its ability to gen-

rate more relevant features as the features extractor � is learned

o solve a multi-task problem; namely a discrimination and a recon-

truction problem, in particular, this method allows for the learning

f both classification and reconstruction-based features. We will

hus further investigate the P sisr / adv,rec method for the compari-

on to the baseline and the state-of-the-art method SRGAN [1] , on

he satellite images domain. 

.3.5. against baseline methods on the satellite images domain 

Our main objective is to show that the VGG loss function

namely, the SRGAN method [1] ) is no longer relevant when

uper-resolving images from a domain different than the ImageNet

omain. In particular, by considering the satellite images domain,

e show in this section that the selected method from the

revious section ( P /adv , rec) outperforms some baselines, which
sisr 
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Table 3 

Comparison of our method P sisr /adv , rec with baselines and the SRGAN method [1] on the satellite images domain, in terms of classical metrics (L2 

and SSIM) and perceptual metrics [44] . 

Methods Low-level Perceptual metrics 

L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l 

Sat P sisr /mse 0.011 0.134 1.873 0.245 1.855 0.411 2.536 0.419 

P sisr /adv , mse 0.082 0.197 1.458 0.205 1.466 0.352 2.125 0.347 

SRGAN [1] 0.228 0.188 1.510 0.220 1.361 0.282 2.230 0.412 

P sisr /adv , rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344 

Fig. 5. Rows refer to the different considered Datasets. Columns refer to methods and ground-truth images: LR and HR refer to the low- and high-resolution pairs. The 

different used methods are: (a) P sisr / rec , (b) P sisr / dis,rec , (c) P sisr / adv and (d) P sisr / adv,rec . Best view in PDF. 
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re P sisr / mse (pixel-wise MSE loss) and P sisr / adv,mse (pixel wise

SE loss combined with an adversarial loss), and the state-of-the-

rt super-resolution method, SRGAN [1] . Note that all the methods

se the same architectures (depicted in Fig. 4 ) for the generator

nd discriminator and are trained on the same domain (here, on

atellite images). Our purpose being to show the relevance of the

roposed method on a domain “far” from the ImageNet domain,

e do not consider standard SR benchmarks, which are raltively

close” to the ImageNet domain. 

Table 3 presents quantitative results, in terms of classical met-

ics (L2 and SSIM) and perceptual metrics given by Eq. (6) , of the

ifferent methods on the Sat dataset. As we can notice, our method

 sisr /adv , rec outperforms the other methods in terms of percep-

ual metrics. Knowing that the perceptual metrics agree with hu-

an judgments [44] , these results validate the effectiveness of the

 sisr /adv , rec method. Note also that even if SRGAN [1] is optimized

o minimize a VGG loss, it does not give the lowest perceptual er-

ors in terms of the perceptual metrics VGG and VGG-l, this is due
o the fact that the VGG features are not relevant for the satel- [  
ite images domain. In addition, P sisr /adv , rec gives the lowest per-

eptual errors in terms of the perceptual metrics Alex and Alex-l

hich agrees with a human perception. In fact, AlexNet network

ay more closely match the architecture of the human visual cor-

ex [49] . 

Fig. 6 shows some qualitative results of different methods on

 patch of an image from the Sat dataset. As we can notice, the

 sisr /adv , rec method gives the perceptually closest result to the

round-truth image, which agrees with the quantitative results of

able 3 . 

.3.6. Further results 

In this section, we provide further qualitative and quantitative

omparisons to the considered baselines of the previous section. In

articular, we consider all the presented datasets for the compar-

sons. Qualitative results are provided in Fig. 7 . SRGAN performs

etter on ImageNet, which is not that surprising considering our

eatures extractor was trained much less than VGG19 used in

1] and the VGG features being more relevant for images from the
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Fig. 6. Results of different P sisr methods on a patch of an image from the Sat dataset. 

Fig. 7. Rows refer to the different Datasets. Columns refer to methods and ground-truth images: LR and HR refer to the low- and high-resolution pairs. P-mse+ refers to the 

method P sisr / mse with an adversarial loss ( λ2 > 0), SRGAN for the method in [1] and our method P sisr / adv,rec . Best view in PDF. 
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ImageNet domain. Nonetheless, we do have sharper images than

the MSE based methods, although we show some artifact (espe-

cially on the boat) which we attribute to the competition between

the content and adversarial losses. On DTD though, we can see

the benefit of our method over a pre-trained VGG loss. Indeed,

SRGAN is blurrier on both the house (first row) and the cliff (third

row), in spite of having less artifacts than our method. On the

“cracks” example (second row), SRGAN even totally obliterates the

details in the center. Finally, results on the dataset Sat, which is

the most different dataset compared to ImageNet, are the most

compelling. Our method generates super resolved images that

are really close to the real high resolution images, while we can

clearly see imperfections on SRGAN’s results because of VGG19
hich was not trained to detect perceptual features on satellite

mages. 

Quantitative results are summarized in Table 4 . As shown in

1,44] , the standard quantitative measures such as L2 and SSIM

ail to highlight image quality according to the human visual

ystem. In fact, while the results of P sisr / mse are overly smooth

erceptually, it has the lowest L2 and SSIM errors on Sat. However,

erceptual metrics agree with what we assess qualitatively: SR-

AN performs best on ImageNet but not on Sat, the distribution of

hich is the farthest from ImageNet. Actually, SRGAN ranks third

f all four methods on Sat, just before P sisr / adv,mse , while still

erforming best on DTD which still is pretty close to ImageNet.

his shows that the VGG features become less and less relevant as
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Table 4 

Comparison of our methods P sisr /adv , rec and P sisr /dis, rec with baselines and the SRGAN method [1] on the datasets ImageNet (a subset of 20 0,0 0 0 

randomly selected images) and DTD, in terms of classical metrics (L2 and SSIM) and perceptual metrics [44] . 

Methods Low-level Perceptual metrics 

L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l 

ImageNet P sisr /mse 0.017 0.146 1.568 0.280 1.435 0.391 2.064 0.349 

P sisr /adv , mse 0.020 0.156 1.634 0.241 1.397 0.329 2.223 0.384 

SRGAN 0.028 0.170 1.303 0.177 1.084 0.225 2.045 0.342 

P sisr /adv , rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340 

DTD P sisr /mse 0.029 0.185 1.972 0.342 1.856 0.470 2.479 0.434 

P sisr /adv , mse 0.025 0.188 1.880 0.268 1.586 0.349 2.512 0.430 

SRGAN 0.031 0.191 1.557 0.209 1.298 0.241 2.308 0.393 

P sisr /dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392 

Table 5 

Comparison of the proposed P sisr methods in terms of traditional metrics (L2 and SSIM) and the perceptual error (PE) given by Eq. (6) on all the 

considered datasets. In terms of perceptual metrics, the proposed P sisr methods rank in the second position after SRGAN [1] on the datasets ImageNet 

and DTD, while they outperform all the baselines on the satellite images domain which is far from the ImageNet domain. 

Methods Low-level Perceptual metrics 

L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l 

ImageNet P sisr /mse 0.017 0.146 1.568 0.280 1.435 0.391 2.064 0.349 

P sisr /adv , mse 0.020 0.156 1.634 0.241 1.397 0.329 2.223 0.384 

SRGAN 0.028 0.170 1.303 0.177 1.084 0.225 2.045 0.342 

P sisr /dis 0.018 0.147 1.606 0.279 1.470 0.398 2.088 0.358 

P sisr /rec 0.020 0.162 1.723 0.301 1.595 0.425 2.243 0.388 

P sisr /dis, rec 0.017 0.147 1.587 0.279 1.420 0.382 2.052 0.353 

P sisr /adv 0.028 0.202 1.820 0.222 1.554 0.322 2.598 0.432 

P sisr /adv , rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340 

DTD P sisr /mse 0.029 0.185 1.972 0.342 1.856 0.470 2.479 0.434 

P sisr /adv , mse 0.025 0.188 1.880 0.268 1.586 0.349 2.512 0.430 

SRGAN 0.031 0.191 1.557 0.209 1.298 0.241 2.308 0.393 

P sisr /dis 0.027 0.184 1.873 0.327 1.739 0.440 2.401 0.421 

P sisr /rec 0.027 0.183 1.851 0.320 1.726 0.438 2.398 0.420 

P sisr /dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392 

P sisr /adv 0.036 0.227 2.077 0.281 1.812 0.375 2.770 0.473 

P sisr /adv , rec 0.046 0.236 2.089 0.277 1.793 0.344 2.796 0.481 

Sat P sisr /mse 0.011 0.134 1.873 0.245 1.855 0.411 2.536 0.419 

P sisr /adv , mse 0.082 0.197 1.458 0.205 1.466 0.352 2.125 0.347 

SRGAN 0.228 0.188 1.510 0.220 1.361 0.282 2.230 0.412 

P sisr /dis 0.011 0.129 1.484 0.210 1.508 0.356 2.121 0.355 

P sisr /rec 0.060 0.168 1.705 0.245 1.762 0.423 2.260 0.395 

P sisr /dis, rec 0.011 0.138 1.493 0.215 1.435 0.351 2.108 0.372 

P sisr /adv 0.030 0.214 1.719 0.181 1.627 0.306 2.711 0.419 

P sisr /adv , rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344 
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he dataset’s distribution part from ImageNet. On the other hand,

ur training framework allows to construct relevant features on

ny (never seen) dataset. Thus our method P sisr / adv,rec performs

est on Sat. Our method performing better than P sisr / adv,mse also

hows that our framework helps finding detail preserving features.

ig. 7 provides the results of the different baselines and our

ethod on some examples of the considered datasets. We notice

rom these images that our method P sisr /adv , rec recovers finer

etails on the different datasets while it outperforms the consid-

red baselines on satellite images. Table 5 summarizes the results

f the different methods on the considered datasets through the

aper. From these results, we make the following conclusions: 

• When the considered domain is far enough from the ImageNet

domain, the VGG loss introduced by Ledig et al. [1] is no longer

relevant. 

• The VGG network cannot be fine-tuned when considering a do-

main for which there is no available labels for the images ( e.g. ,

satellite images). Thus, the SRGAN method cannot be exploited

efficiently in this case. 

• Our framework results in a method ( P sisr /adv , rec) that outper-

forms some baselines and the SRGAN method on the satellite

images domain. 
• Even on a domain close to the ImageNet domain ( e.g. , texture

images), one can find within our framework methods which

give almost similar results to the SRGAN method, while the

later is based on VGG features and thus need to train the VGG

network on the whole ImageNet dataset. 

. Conclusion and perspectives 

In this paper, we propose a general framework named Gener-

tive Collaborative Networks (GCN) which generalizes the existing

ethods for the problem of learning a mapping between two

omains. The GCN framework highlights that there is a learning

trategy of mappings that is not explored in the literature. In

articular, the optimization of these mappings in the feature space

f a features extractor network, which is mutually learned at the

ame time as the considered mapping ( joint-learning strategy). The

CN framework was evaluated in the context of super-resolution

n three datasets (ImageNet [10] , DTD [47] and satellite images).

e have shown that the proposed joint-learning strategy leads to

 method that outperforms the state of the art [1] which uses

 pre-trained features extractor network (VGG19 on ImageNet).

pecifically, this holds when the domain of interest is “far” from

he ImageNet domain ( e.g., satellite images or images from the
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medical domain 

5 ). However, note that even for domains close

to the ImageNet domain, the proposed method gives convincing

(almost similar to [1] ) results without using the whole ImageNet

dataset to learn the features extractor network (as performed in

[1] ). 

In this work, we systematically designed the proposed methods

by using the first layer of the features extractor networks, while it

could be interesting to evaluate in more detail the impact of this

choice regarding the learning strategy. Moreover, the impact of the

selected layer may also depend on the considered dataset. More

generally, the GCN framework offers a large vision on the wide

variety of existing loss functions used in the literature of learn-

ing mappings-based problems ( e.g., super-resolution, image com-

pletion, artistic style transfer, etc.). In fact, we show that these loss

functions can be simply reformulated, in the proposed framework,

as a certain combination of a particular type of features extractor

networks ( P/ rec , P/ dis , P/ dis,rec , P/ adv and P/ adv,rec ) and a partic-

ular learning strategies ( joint-learning or disjoint-learning ). There-

fore it will be interesting to explore this promising framework in

other learning mappings-based problems. 
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