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Abstract

Context:
Study of largeGrammatrices for concentrated data.

Motivation:
Observation: RMT predictsML performances in high-dimension under

Gaussian assumptions on data.

BUT Real data are unlikely close toGaussian vectors.

Gaussian vectors fall within a larger, more useful, class of random vectors.

Results:
GAN data [1] fall within the class of concentrated vectors.

Only first and second order statistics of concentrated data matter to

describe the behavior ofGrammatrices.

Concentrated Vectors

Definition 1. Given a normed space (E, ‖ · ‖E) and q ∈ R, a random vectorX ∈ E is

q-exponentially concentrated if for any 1-Lipschitz functionF : Rp → R, there exists
C, c > 0 s.t.

∀t > 0, P {|F(X) − EF(X)| ≥ t} ≤ C e−c tq denoted−−−−→ X ∈ O(e−·q) in (E, ‖ · ‖E)

(P1)X ∼ N (0, Ip) is 2-exponentially concentrated [2].
(P2) IfX ∈ O(e−·q) and G is `-Lipschitz, then G(X) ∈ O(e−(·/`)q).

“Concentrated vectors are stable through Lipschitz maps.”

Model & Assumptions

(A1) Datamatrix (distributed in k classes C1, C2, . . . , Ck):

X =

x1, . . . , xn1︸ ︷︷ ︸
∈O(e−·q1)

, xn1+1, . . . , xn2︸ ︷︷ ︸
∈O(e−·q2)

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∈O(e−·qk)

 ∈ Rp×n

Model statistics:

µ` = Exi∈C`
[xi], C` = Exi∈C`

[xix
ᵀ
i ]

(A2) Growth rate assumptions: As p → ∞,

1. p/n → c ∈ (0, ∞).
2. The number of classers k is bounded.

3. For any ` ∈ [k], ‖µ`‖ = O(√p).

Grammatrix and its resolvent:

G = 1
p
XᵀX, Q(z) = (G + zIn)−1

mL(z) = 1
n

tr(Q(−z)), UUᵀ = 1
2πi

∮
γ

Q(−z)dz

Why Concentrated Vectors?
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Deterministic Equivalent for Q(z)
TheoremUnder the assumptions (A1) and (A2).

We haveQ(z) ∈ O(e−(√p ·)q) in (Rn×n, ‖ · ‖). Furthermore,

∥∥∥E[Q(z)] − Q̃(z)
∥∥∥ = O

√
log p

p

 where Q̃(z) = 1
z
Λ(z) + 1

p z
JΩ(z)Jᵀ

with Λ(z) =
{ 1n`

1+δ`(z)

}k

`=1
andΩ(z) = {µ`

ᵀR̃(z)µ`}k
`=1

R̃(z) =

1
k

k∑
`=1

C`

1 + δ`(z)
+ zIp

−1

with δ(z) = [δ1(z), . . . , δk(z)] is the unique fixed point of the system of equations

δ`(z) = 1
p

tr

C`

1
k

k∑
j=1

Cj

1 + δj(z)
+ zIp

−1
 for each ` ∈ [k].

KeyObservation: Only first and second order statistics matter!

Application to GAN-Generated Images

Figure 1. Images generated by the BigGANmodel [3].
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Perspectives

Generalize to otherML tasks (Classification, Regression and TL).

Understand and improveGANs by adding statistic constraints.
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