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= Lasso: Amongst the most well-known tools in statistics and signal processing.

= Employ ¢;-regularization to impose sparsity on the solution sought by
selecting limited number of features.

= |nterests recently in the field of classification but lack of interpretability
(choice of hyperparameter, statistical understanding)

= Need for a deep theoretical understanding of Lasso scheme for classification.

= State of the art: Statistical physics-based analysis of Lasso and analysis using
CGMT In the regression context.

= |n this work: Large dimensional of Lasso in a classification context using
Random Matrix Theory (RMT).

= Application to hyperparameter selection.

Deciphering Lasso-based Classification Through a Large Dimensional Analysis

of the Iterative Soft-Thresholding Algorithm
Mohamed El Amine Seddik *

Growth Rate

lgor Colin *

CHEN
UNIUEREFTY

Aladin Virmaux *

Theory versus simulations

As n — 00, p — 00, We assume p/n — ¢y > 0and ng/n — ¢, € (0,1), £ =1, 2.

Distribution of X and x

There exist two constants C, ¢ > 0 (independent of n, p) such that, for any 1-
Lipschitz function f : RP*" — R,

P(|f(X) —mypx)| > t) < Ce " vt >0,

where mz is a median of the random variable Z. We require that the columns
of X are independent and that for ¢ € {1,2}, ng), . ,xfnfg) are 1.i.d. such that

Cov(xi-g)) =1,

Main ingredients of the theory

Context
Observations:
= Samples/data points from two classes X/El) E C, and X( ) e Co.
= Data matrix X = [X®, X®] with X© =[x\, ... ,X%g], x e Ry
= Associated labels yf Vi y = [y§ ), . ,ygﬁ,yg >, . ,yﬁi)]T e {—-1,1}".
Objective:

= Glven a new test datum x, our goal Is to predict its associated label y using
a linear classifier obtained through Lasso.

Prediction steps:

= Sep. hyperplane: solution w* of the (convex, but non-smooth!) min.
problem

Arg min — HY XTwl|2 4+ Al|w]:. (Lasso)

wERP

= Gilven the optimal separating hyperplane w?*, classification performed by

sign of
g(x) = w*'x.

= Solve equation Lasso via the iterative soft-thresholding algorithm (ISTA).

Iterative soft-thresholding algorithm

= Goal: Track how the randomness of the data X induces randomness onto
w’ (and, in the limit: w*), which is calculated through ISTA.

= Main focus on estimating mean E|w*| and covariance Cov(w*) of w™.

= Construct an iterative scheme (with z7 = w’/ — 7XX'w’ + 7Xy)

E '] = [5,(2)].
= Prove that z’ is gaussian random vector which allows to write

E [wjﬂ: = (7‘)\, 7’ O'Zj) ,

where for random vector v we denote v = E|v| and o, the diagonal of
Cov(v) with

w:R.ogx R x RPF — RP,
()\, \_f, O'V) > EVNN(\_T,E\,)[S)\(V)]'

= Final step: Estimate the quantities z’ and o,.

Proof idea (continued)

* For a sparse minimization of the differentiable function h(w) = 3|y — X'w||3,

do
Gradient step: z/ = w/ ™! — 7Vh (wj_l) :
Sparsity step: w’ = S, (zj) ,
= Applied to Lasso-based classification w* via ISTA (initialization w" = 0 € R?):
Wt =5, (wj +7X (y — Xij))

= Goal: Predict (asymptotically precise) classification accuracy under this
framework.

= For illustration, focus just on z’. By linearity of expectation

7l = I [wf XXl 4 TXy}

o — T En: E [(ijXZ-)XZ} + 7E[ XY/,

= Disentangle strong dependency between w’ at iteration j and the
(columns of the) data matrix X — leave-one out approach.
= Approximate E[wiTxi] for both classes using the functions

CCw(z) ( [XTw] }) 9 7‘-(2) < {17 2}7
" Functions (¢, are established through determining the difference between
w’ . and w’ using the interpolating function

W’ (1) = Sy (wi(t) + X (o — X (1))
+rixi(y; — W' (1)), te0,1],

Goal: Predict classification accuracy from only statistical properties (mean, covari-
ance) of the training set!
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Figure 1. (Left) Amazon review dataset (“review to score - positiv vs. negative”)
for two score classes with dim. p = 400 and n; = ny = 100. (right) MNIST dataset
(‘4" vs. “9"). Histogram of the values of the classification score g(x) = w*'x

generated from 400 test samples.

= (Close fit between the theoretical decision score and the empirical even on
real data.

= Possibility to predict in advance the classification error and best
hyperparameters.
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Figure 2. Close fit between the theoretical and empirical (averaged over 1000 test
samples) classification accuracy (as a function of A), for three different values of «
(sparsity level). Gaussian mixture model with class sizes ny, ns = 500 and

9~ N (e, 1), for € = 1,2, with mean py = (—1)’b ® m, where m ~ N (0, 1),
and where b is a Bernoulli random vector that puts each single entry to zero with
probability a/p, with the feature size p = 100.

Conclusion

= Theoretical analysis of a Lasso-based classification through the analysis of
an iterative algorithm (ISTA).

= [nteresting insights into its applicability in a classification context, but also
offers a reliable alternative
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