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Abstract

Lasso: Amongst the most well-known tools in statistics and signal processing.

Employ `1-regularization to impose sparsity on the solution sought by

selecting limited number of features.

Interests recently in the field of classification but lack of interpretability

(choice of hyperparameter, statistical understanding)

Need for a deep theoretical understanding of Lasso scheme for classification.

State of the art: Statistical physics-based analysis of Lasso and analysis using

CGMT in the regression context.

In this work: Large dimensional of Lasso in a classification context using

Random Matrix Theory (RMT).

Application to hyperparameter selection.

Context

Observations:

Samples/data points from two classes x(1)
i ∈ C1 and x(2)

i ∈ C2.

Data matrix X = [X(1), X(2)] with X(`) = [x(`)
1 , . . . , x(`)

n` ], x(`)
i ∈ Rp .

Associated labels y
(`)
i in y = [y(1)

1 , . . . , y
(1)
n1 , y

(2)
1 , . . . , y

(2)
n2 ]T ∈ {−1, 1}n.

Objective:

Given a new test datum x, our goal is to predict its associated label y using

a linear classifier obtained through Lasso.

Prediction steps:

Sep. hyperplane: solution ω? of the (convex, but non-smooth!) min.

problem

arg min
ω∈Rp

1
2
‖y − XTω‖2

2 + λ‖ω‖1. (Lasso)

Given the optimal separating hyperplane ω?, classification performed by

sign of

g(x) = ω?Tx.

Solve equation Lasso via the iterative soft-thresholding algorithm (ISTA).

Iterative soft-thresholding algorithm

For a sparse minimization of the differentiable function h(ω) = 1
2‖y − XTω‖2

2,

do

Gradient step: zj = ωj−1 − τ∇h
(
ωj−1

)
,

Sparsity step: ωj = Sτλ

(
zj
)

,

Applied to Lasso-based classification ω? via ISTA (initialization ω0 = 0 ∈ Rp):

ωj+1 = Sτλ

(
ωj + τX

(
y − XTωj

))
Goal: Predict (asymptotically precise) classification accuracy under this

framework.

Growth Rate

As n → ∞, p → ∞, we assume p/n → c0 > 0 and n`/n → c` ∈ (0, 1), ` = 1, 2.

Distribution of X and x
There exist two constants C, c > 0 (independent of n, p) such that, for any 1-
Lipschitz function f : Rp×n → R,

P(|f (X) − mf (X)| ≥ t) ≤ Ce−(t/c)2 ∀t > 0,

where mZ is a median of the random variable Z . We require that the columns

of X are independent and that for ` ∈ {1, 2}, x(`)
1 , . . . , x(`)

n` are i.i.d. such that

Cov(x(`)
i ) = Ip.

Main ingredients of the theory

Goal: Track how the randomness of the data X induces randomness onto

ωj (and, in the limit: ω?), which is calculated through ISTA.

Main focus on estimating mean E[ω?] and covariance Cov(ω?) of ω?.

Construct an iterative scheme (with zj = ωj − τXXTωj + τXy)

E
[
ωj+1

]
= E

[
Sτλ(zj)

]
.

Prove that zj is gaussian random vector which allows to write

E
[
ωj+1

]
= ϕ

(
τλ, z̄j, σzj

)
,

where for random vector v we denote v̄ = E[v] and σv the diagonal of

Cov(v) with

ϕ : R>0 × Rp × Rp → Rp,

(λ, v̄, σv) 7→ Ev∼N (v̄,Σv)[Sλ(v)].

Final step: Estimate the quantities z̄j and σzj.

Proof idea (continued)

For illustration, focus just on z̄j. By linearity of expectation

z̄j = E
[
ωj − τXXTωj + τXy

]
= ω̄j − τ

n∑
i=1

E
[
(ωjTxi)xi

]
+ τE[Xy],

Disentangle strong dependency between ωj at iteration j and the

(columns of the) data matrix X → leave-one out approach.

Approximate E[ωjTxi] for both classes using the functions

ζCπ(i)

(
E
[
xT

i ωj
−i

])
, π(i) ∈ {1, 2},

Functions ζCπ(i) are established through determining the difference between

ωj
−i and ωj using the interpolating function

ωj
−i(t) = Sτλ

(
ωj

−i(t) + τX−i

(
y−i − XT

−iω
j
−i(t)

)
+ τtxi(yi − ωj

−i(t)Txi)
)

, t ∈ [0, 1],

Theory versus simulations

Goal: Predict classification accuracy from only statistical properties (mean, covari-

ance) of the training set!
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Figure 1. (Left) Amazon review dataset (“review to score - positiv vs. negative”)

for two score classes with dim. p = 400 and n1 = n2 = 100. (right) MNIST dataset

(“4” vs. “9”). Histogram of the values of the classification score g(x) = ω?Tx
generated from 400 test samples.

Close fit between the theoretical decision score and the empirical even on

real data.

Possibility to predict in advance the classification error and best

hyperparameters.
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Figure 2. Close fit between the theoretical and empirical (averaged over 1 000 test

samples) classification accuracy (as a function of λ), for three different values of α
(sparsity level). Gaussian mixture model with class sizes n1, n2 = 500 and

x(`)
i ∼ N (µ`, Ip), for ` = 1, 2, with mean µ` = (−1)`b � m, where m ∼ N (0p,

1
pIp),

and where b is a Bernoulli random vector that puts each single entry to zero with

probability α/p, with the feature size p = 100.

Conclusion

Theoretical analysis of a Lasso-based classification through the analysis of

an iterative algorithm (ISTA).

Interesting insights into its applicability in a classification context, but also

offers a reliable alternative
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