
Node Feature Kernels Increase Graph
Convolutional Network Robustness

Mohamed El Amine Seddik
Changmin Wu
Johannes Lutzeyer
Michalis Vazirgiannis

Overview
Message-Passing Framework

• Graph Convolutional Network (GCN, [3]): σ(ÃXΘ).

• Input: graph structure Ã and node features X.

• Procedure: Aggregation step ÃX and Update step XΘ.

Research Problem
Question 1: What is the influence of the graph structure
information and node feature information on each other in
the GCN?
Question 2: How will the inference drawn from a GCN
be impacted by graph structural noise and is there a way to
enhance its robustness to such noise?

Take-away Message
The message-passing step dilutes (or in the extreme case
completely ignores) information present in the node
features if the underlying graph structure is noisy (or in
the extreme case completely random). Adding a node
feature kernel addresses this problem.

RandomGCN
• Replace trainable weight Θ with normally distributed matrix,

i.e., σ(ÃXW), where Wij ∼ N (0, 1), Ã ∈ Rn×n, X ∈ Rn×p and
W ∈ Rp×d.

• Insight from this model: we study the spectral behaviour of
Gram matrix G = 1

dσ(ÃXW)σ(W ⊺X⊺Ã⊺), specifically the
eigenvector of G corresponding to its largest eigenvalue (the in-
formative eigenvector).

Why RandomGCN?
• To enable a Random Matrix Theory (RMT) analysis and its

powerful tools in the theoretical study of neural networks.
• Empirically, RandomGCNs can achieve comparable results with

the vanilla GCN, i.e., no training is needed for the update weights
in high dimensions.

0 1000 2000 3000 4000 5000
Hidden dimension

30

40

50

60

70

80

N
od

e
C

la
ss

ifi
ca

tio
n

Ac
cu

ra
cy

 (%
)

(a) Cora

0 1000 2000 3000 4000 5000
Hidden dimension

20

30

40

50

60

70
(b) CiteSeer

0 1000 2000 3000 4000 5000
Hidden dimension

40

45

50

55

60

65

70

75

80
(c) PubMed

MLP Vanilla GCN Random GCN

Figure 1: In high dimensions: GCN and RandomGCN exhibit equivalent
performance.

Assumptions and Main Results
Assumptions
Data Node features follow a Gaussian Mixture Model,

xi = (−1)a
µ
√
p
+ zi with zi ∼ N (0, Ip/p).

Data Graph Structure follows a Stochastic Block Model (SBM),

Ã =
1√
n
(A− qq⊺) where Aij ∼ Ber(qiqjCab).

RMT Growth Rate Assumptions on the number of nodes, feature
dimension, dimension of the random matrix W and edge proba-
bilities.

RMT Regularity Assumptions on the activation function σ(·).

Theorem 1 (Informal). The extent to which the labels vector, that we
are trying to predict, correlates with the informative eigenvector of the
Gram matrix of our RandomGCN depends on the presence of cluster
structure in the SBM.

Theorem 2 (Main Corollary). When η = 0, let X̃ = ÃX and ȳ be
the node labels, we have |ȳ⊺ŷ|2 −−−−→

n→∞
0, where ŷ is the eigenvector

corresponding to the largest eigenvalue of X̃X̃⊺.

Proposed Solution
Observation If a graph is sufficiently perturbed, then the GCN will

fail to benefit from the node features no matter how informa-
tive they are.

Intuitive Explanation In a message-passing framework, node fea-
tures are aggregated over graph neighbourhoods. When these
neighbourhoods are random, we are aggregating random subsets
of node features, thus destroying potential information.

Proposed Solution
This can be addressed by using the node feature informa-
tion to directly inform the structure of the GCNs message
passing scheme

ϵÂ+ (1− ϵ)K̃.

Figure 2: Adding a node feature kernel helps reconstruct meaningful neigh-
bourhoods.

Experiments
We evaluate the robustness of the GCN model on the node classifica-
tion task with two structural perturbation schemes: edge deletion
of ratio α and edge insertion of ratio β. Consistent with our theoret-
ical analysis, we use a single-layer GCN model (with MLP readout).
For simplicity we use the linear kernel Kij = x⊺

i xj and sparsify the
dense kernel with the adjacency matrix K ◦ Â.

Stochastic Blockmodels (Community number: 2)
SBM(p = 0.25, q = 0.25) SBM(p = 0.275, q = 0.25) SBM(p = 0.225, q = 0.25)

(α, β) GCN GCN-k GCN GCN-k GCN GCN-k
(0.0, 0.0) 50.53 ± 0.49 66.36 ± 0.81 64.42 ± 0.43 62.26 ± 1.04 63.20 ± 0.94 61.03 ± 1.08

Deletion (0.2, 0.0) 51.03 ± 0.56 65.44 ± 1.07 58.63 ± 0.68 71.57 ± 1.42 60.89 ± 0.83 54.91 ± 1.00
(0.5, 0.0) 49.29 ± 0.59 64.14 ± 1.01 60.76 ± 1.29 68.80 ± 2.04 58.41 ± 1.11 59.51 ± 2.47

Insertion (0.0, 0.5) 50.57 ± 0.75 68.57 ± 1.25 60.49 ± 0.40 68.20 ± 1.38 58.82 ± 1.16 63.54 ± 0.97
(0.0, 1.0) 49.19 ± 0.47 59.31 ± 0.58 53.67 ± 1.11 66.57 ± 1.73 54.87 ± 0.53 60.84 ± 0.75

Delet.+Insert. (0.5, 0.5) 49.26 ± 0.59 68.84 ± 0.86 50.50 ± 0.37 63.36 ± 1.67 50.94 ± 0.86 63.02 ± 0.91
(0.5, 1.0) 49.84 ± 0.69 65.49 ± 1.22 48.34 ± 0.22 60.16 ± 1.21 49.23 ± 0.45 59.64 ± 1.33

∗ The performance of the GCN degrades on SBMs with cluster structure (ho-
mophilic/heterophilic) as a result of edge-deletion and edge-insertion noise.

∗ Addition of the proposed kernel improves GCNs robustness against graph struc-
tural noise.

Citation/Co-purchase/Co-author graphs
CoraFull Photo CS

(α, β) GCN GCN-k GCN GCN-k GCN GCN-k
(0.0, 0.0) 57.21 ± 0.84 56.88 ± 0.48 90.94 ± 0.49 90.09 ± 0.65 92.89 ± 0.41 92.63 ± 0.31

Deletion (0.2, 0.0) 57.25 ± 0.67 55.56 ± 0.69 91.87 ± 0.40 92.19 ± 0.45 90.58 ± 0.48 90.89 ± 0.48
(0.5, 0.0) 53.90 ± 0.70 54.62 ± 0.87 91.10 ± 0.40 87.97 ± 0.54 89.75 ± 0.60 91.27 ± 0.67

Insertion (0.0, 0.5) 48.11 ± 0.89 51.79 ± 0.65 82.79 ± 1.43 84.18 ± 1.27 87.16 ± 0.65 90.81 ± 0.70
(0.0, 1.0) 41.76 ± 1.03 51.91 ± 1.00 72.70 ± 6.40 79.58 ± 1.80 80.34 ± 0.80 90.61 ± 0.37

Delet.+Insert. (0.5, 0.5) 34.70 ± 0.47 46.50 ± 0.61 69.70 ± 3.70 74.65 ± 2.36 73.75 ± 0.98 87.28 ± 0.72
(0.5, 1.0) 27.50 ± 1.04 43.04 ± 0.77 61.13 ± 2.49 63.73 ± 5.04 66.26 ± 0.95 87.51 ± 0.58

∗ Edge-insertion noise seems to have a greater impact on real-world graphs.
∗ Node feature kernel can largely compensate the performance reduction caused

by graph structural noise.

Deeper GCN model (4 layers)
CS

(α, β) GCN GCN-k (ϵ = 0.5) GCN-k (ϵ = 0.2) GCN-jk GCNII GCN-k-jk
(0.0, 0.0) 88.44 ± 0.84 89.81 ± 0.52 91.64 ± 0.39 90.19 ± 0.59 92.13 ± 0.39 91.73 ± 0.26

Deletion (0.2, 0.0) 89.19 ± 0.57 88.41 ± 0.53 91.68 ± 0.55 91.04 ± 0.65 91.56 ± 0.53 91.89 ± 0.77
(0.5, 0.0) 86.68 ± 0.57 86.17 ± 1.06 88.91 ± 0.62 88.44 ± 0.69 90.01 ± 0.69 91.43 ± 0.60

Insertion (0.0, 0.5) 70.94 ± 2.59 84.36 ± 1.19 88.84 ± 0.57 87.37 ± 0.66 90.36 ± 0.58 92.66 ± 0.49
(0.0, 1.0) 35.84 ± 6.91 81.06 ± 3.94 88.27 ± 0.92 81.70 ± 0.63 89.33 ± 1.02 91.42 ± 0.48

Delet.+Insert. (0.5, 0.5) 45.08 ± 4.82 76.27 ± 1.08 82.23 ± 1.08 73.08 ± 1.07 88.66 ± 0.70 87.53 ± 0.85
(0.5, 1.0) 18.16 ± 3.86 53.12 ± 6.21 80.80 ± 0.99 63.84 ± 0.95 88.77 ± 0.89 87.89 ± 0.37

∗ Our proposed kernel performs better or on par with Jumping Knowledge [5]
and GCNII [1] under all noise schemes.

∗ It can be further combined with JK to improve the performance.

We also observed similar behaviour for other GNNs (GIN[6],
GraphSage[2] and GAT[4]). More experiments are on our paper.

References
[1] M. Chen, Z. Wei, Z. Huang, B. Ding, Y. Li.“Simple and deep graph convolutional

networks”, International Conference on Machine Learning, 2020.
[2] W. L. Hamilton, R. Ying & J. Leskovec, “Inductive Representatino Learning on

Large Graphs,” Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, pp. 1025 – 1035, 2017.

[3] Thomas N. Kipf & M. Welling, “Semi-supervised classification with graph convolu-
tional networks” International Conference on Learning Representations, 2017.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò & Y. Bengio, “Graph At-
tention Networks,” International Conference on Learning Representations, 2018.

[5] K. Xu, C. Li, Y. Tian, T. Sonobe,
K. Kawarabayashi, S. Jegelka.“Representation
learning on graphs with jumping knowledge net-
works”, International Conference on Machine
Learning, 2018.

[6] K. Xu, W. Hu, J. Leskovec & S. Jegelka.“How pow-
erful are graph neural networks?”, International
Conference on Learning Representations, 2019.

