

- **Theoretically:** Asymptotic analysis of the Softmax classifier suggests that weights correlate with the class-wise means of the input features.
- **Empirically:** The theoretical observation extends to the Softmax layer of feed-forward neural networks trained for classification tasks.
- Consequences for transfer learning: a simple initialization procedure of the Softmax weights is proposed based on the theoretical findings.

Settings

We consider n data points d_1, \ldots, d_n with their corresponding labels ℓ_1, \ldots, ℓ_n distributed in k different classes $\mathcal{C}_1, \ldots, \mathcal{C}_k$. Denote

$$\boldsymbol{x} = \varphi \circ \phi(\boldsymbol{d}; \Theta) \in \mathbb{R}^p$$

where

- ϕ is implemented by a deep CNN model parameterized by Θ .
- φ is the activation function at the representation layer.

The final class prediction is given by a classifier function $\psi: \mathbb{R}^p \to \mathbb{R}^k$ as

 $\operatorname{arg\,max} \psi(\boldsymbol{x})$ with $\psi(\boldsymbol{x}) = \operatorname{softmax}(\boldsymbol{W}^{\top}\boldsymbol{x}).$

Suppose that the following statistics exist and well defined

$$oldsymbol{m}_\ell = \mathbb{E}_{oldsymbol{d}\in\mathcal{C}_\ell}[oldsymbol{x}] \quad oldsymbol{C}_\ell = \mathbb{E}_{oldsymbol{d}\in\mathcal{C}_\ell}[(oldsymbol{x}-oldsymbol{m}_\ell)(oldsymbol{x}-oldsymbol{m}_\ell)^ op]$$

Softmax Classifier

Minimize:

$$\mathcal{L}(\boldsymbol{w}_{1},\ldots,\boldsymbol{w}_{k}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{\ell=1}^{k} y_{i\ell} \log p_{i\ell}$$
$$p_{i\ell} = \frac{\exp(\boldsymbol{w}_{\ell}^{\mathsf{T}} \boldsymbol{x}_{i})}{\sum_{j=1}^{k} \exp(\boldsymbol{w}_{j}^{\mathsf{T}} \boldsymbol{x}_{i})}, \quad \boldsymbol{y}_{\ell}^{(i)} = \alpha_{c(i)} \frac{|\delta_{\ell,c(i)} - \varepsilon|}{1 + (k-2)\varepsilon}$$

where $\alpha_{c(i)}$ and $\varepsilon > 0$ are hyper-parameters, c(i) returns the class index of the *i*-th datum and $\delta_{i,j}$ stands for the Kronecker delta.

The classical labels are recovered by setting $\alpha_{c(i)} = 1$ and $\varepsilon = 0$.

Neural Networks Classify through the Class-wise Means of their Representations

Mohamed Tamaazousti² Mohamed El Amine Seddik¹

¹Huawei Paris Research Center, France ²University Paris-Saclay, CEA List, France

Assumption on statistical model

For $\boldsymbol{x}_i \in \mathcal{C}_\ell$, assume $\boldsymbol{x}_i \sim \mathcal{N}(\boldsymbol{m}_\ell, \boldsymbol{C}_\ell)$. Denote $\pi_{\ell} = \lim_{n \to \infty} \frac{|\mathcal{C}_{\ell}|}{n}$ the proportion of class \mathcal{C}_{ℓ} .

Expression of the gradients of the Softmax class-weight vectors

 $\nabla_{\boldsymbol{w}_{\ell}} \mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \alpha_{c(i)} \left(\frac{e^{\boldsymbol{w}_{\ell}^{\mathsf{T}} \boldsymbol{x}_{i}}}{\sum_{i=1}^{k} e^{\boldsymbol{w}_{j}^{\mathsf{T}} \boldsymbol{x}_{i}}} - \frac{|\delta_{\ell,c(i)} - \varepsilon|}{1 + (k-2)\varepsilon} \right)$

Asymptotic Softmax class-weight vectors

Let $\bar{w}_1, \ldots, \bar{w}_k$ be the deterministic vectors satisfying $\mathbb{E}[\nabla_{\bar{w}_\ell} \mathcal{L}] = 0$. Thus, each $ar{m{w}}_\ell$ satisfies the implicit equation

$$\bar{\boldsymbol{w}}_{\ell} = \left(\sum_{j=1}^{k} \alpha_{j} \pi_{j} \mathbb{E}_{j} [f_{\ell,i}'(\bar{\boldsymbol{w}}_{\ell}^{\mathsf{T}} \boldsymbol{x}_{i})] \boldsymbol{C}_{j}\right)^{-1} \left(\sum_{j=1}^{k} |\boldsymbol{w}_{\ell}|^{\mathsf{T}} \boldsymbol{x}_{j}| \right)^{-1} \left(\sum_{j=1}^{k} |\boldsymbol{w}_{\ell}|^{\mathsf{T}} \boldsymbol{x}_{j}|^{\mathsf{T}} \boldsymbol{x}$$

where the notation $\mathbb{E}_j[g(\boldsymbol{x}_i)] \equiv \mathbb{E}[g(\boldsymbol{x}_i) \mid \boldsymbol{x}_i \in \mathcal{C}_j]$ for some $g : \mathbb{R} \to \mathbb{R}$.

Setting the parameters $\alpha_i = (k\pi_i)^{-1}$ results in the class-weight vectors becoming independent of the proportion π_i :

$$ar{oldsymbol{w}}_\ell = \left(\sum_{j=1}^k \mathbb{E}_j [f'_{\ell,i}(ar{oldsymbol{w}}_\ell^\intercal oldsymbol{x}_i)] oldsymbol{C}_j
ight)^{-1} \left(\sum_{j=1}^k \mathbb{E}_j [f'_{\ell,i}(ar{oldsymbol{w}}_\ell^\intercal oldsymbol{x}_i)] oldsymbol{C}_j
ight)^{-1}$$

Near optimal representations (NOR)

Let $\epsilon > 0$, assume

- $m_i^{\mathsf{T}} m_j = \delta_{i,j} \mu_1 + (1 \delta_{i,j}) \mu_2$ with $\mu_1 = \mathcal{O}(1)$ and $\mu_2 = \mathcal{O}(p^{-\epsilon})$.
- $C_j = \sigma_{1,j}^2 I_p + \sigma_{2,j}^2 \left(\mathbf{1}_p \mathbf{1}_p^\intercal I_p \right)$ with $\sigma_{1,j}^2 = \mathcal{O}(p^{-\epsilon})$ and $\sigma_{2,j}^2 = \mathcal{O}(p^{-1-3\epsilon})$.

Notably, these conditions ensure (as $p \to \infty$) that the between-class means are asymptotically orthogonal (maximize the between-class variance) and the within class covariances asymptotically isotropic (independent features).

Asymptotic Softmax weight vectors under NOR assumption

For near optimal representations, for sufficiently large p and letting $\varepsilon \to 0$ in the expression of the generalized labels $y_{\ell}^{(i)}$, the class-weight vectors are asymptotically proportional to the centred class-wise means as

$$\bar{\boldsymbol{w}}_{\ell} = \frac{\gamma_{\ell} \, k \, e^{-\kappa \, \mu_1}}{1 + (k-1) \, e^{-\kappa \, \mu_1}} \left(\boldsymbol{m}_{\ell} - \frac{1}{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \frac{1}{k} \sum_{j=1}^{k} \frac{1}{k} \sum_{j=1}^{k} \frac{1}{k} \sum_{j=1}^{k} \frac{1}{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \frac{1}{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \frac{1}{k} \sum_{j=1}^{k} \sum_{j=1}^{k$$

for some constant $\kappa > 0$ and $\gamma_{\ell} = \left(\sum_{j=1}^{k} \sigma_{1,j}^2 \mathbb{E}_j [-f'_{\ell,i}(\bar{\boldsymbol{w}}_{\ell}^{\mathsf{T}} \boldsymbol{x}_i)]\right)^{-1} \ge \frac{4}{k \sigma_{1,\max}^2}.$

$$oldsymbol{x}_i \equiv rac{1}{n} \sum_{i=1}^n lpha_{c(i)} f_{\ell,i}(oldsymbol{w}_\ell^\intercal oldsymbol{x}_i) oldsymbol{x}_i.$$

- $\sum \alpha_j \pi_j \mathbb{E}_j [f_{\ell,i}(\bar{\boldsymbol{w}}_{\ell}^{\mathsf{T}} \boldsymbol{x}_i)] \boldsymbol{m}_j$

- $\mathbb{E}_{j}[f_{\ell,i}(ar{oldsymbol{w}}_{\ell}^{\intercal}oldsymbol{x}_{i})]oldsymbol{m}_{j}$

- $\sum_{j=1}^{k} \boldsymbol{m}_{j} + \mathcal{O}_{\parallel \cdot \parallel} (1)$

Our findings suggest three main procedures for efficient transfer learning: (i) use of symmetric representation activations to ensure the near-optimal representations assumption; (ii) source model selection without training the Softmax layer; (iii) initialization procedure which accelerates the training of the Softmax layer as the target domain gets closer to the source domain.

NOR in practice

Correlation between $ar{w}_\ell$ and $ar{m}_\ell$

Conclusion

AAAI 2022 - Contact: melaseddik@gmail.com