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Abstract

Softmax
Probabilities

Theoretically: Asymptotic analysis of the Softmax classifier suggests that

weights correlate with the class-wise means of the input features.

Empirically: The theoretical observation extends to the Softmax layer of

feed-forward neural networks trained for classification tasks.

Consequences for transfer learning: a simple initialization procedure of the

Softmax weights is proposed based on the theoretical findings.

Settings

We consider n data points d1, . . . ,dn with their corresponding labels `1, . . . , `n dis-
tributed in k different classes C1, . . . , Ck. Denote

x = ϕ ◦ φ(d; Θ) ∈ Rp

where

φ is implemented by a deep CNN model parameterized by Θ.
ϕ is the activation function at the representation layer.

The final class prediction is given by a classifier function ψ : Rp → Rk as

arg max ψ(x) with ψ(x) = softmax(W >x).

Suppose that the following statistics exist and well defined

m` = Ed∈C`[x] C` = Ed∈C`[(x − m`)(x − m`)>]

Softmax Classifier

Minimize:

L(w1, . . . ,wk) = −1
n

n∑
i=1

k∑
`=1

yi` log pi`

pi` = exp(wᵀ
`xi)∑k

j=1 exp(wᵀ
jxi)

, y
(i)
` = αc(i)

|δ`,c(i) − ε|
1 + (k − 2)ε

where αc(i) and ε > 0 are hyper-parameters, c(i) returns the class index of the

i-th datum and δi,j stands for the Kronecker delta.

The classical labels are recovered by setting αc(i) = 1 and ε = 0.

Assumption on statistical model

For xi ∈ C`, assume xi ∼ N (m`,C`).

Denote π` = limn
|C`|
n the proportion of class C`.

Expression of the gradients of the Softmax
class-weight vectors

∇w`
L = 1

n

n∑
i=1

αc(i)

 ewᵀ
`xi∑k

j=1 e
wᵀ
jxi

−
|δ`,c(i) − ε|

1 + (k − 2)ε

xi ≡ 1
n

n∑
i=1

αc(i)f`,i(wᵀ
`xi)xi.

Asymptotic Softmax class-weight vectors

Let w̄1, . . . , w̄k be the deterministic vectors satisfying E[∇w̄`
L] = 0. Thus, each

w̄` satisfies the implicit equation

w̄` =

 k∑
j=1

αjπjEj[f ′
`,i(w̄

ᵀ
`xi)]Cj

−1  k∑
j=1

αjπjEj[f`,i(w̄ᵀ
`xi)]mj


where the notation Ej[g(xi)] ≡ E[g(xi) | xi ∈ Cj] for some g : R → R.

Setting the parameters αj = (kπj)−1 results in the class-weight vectors becoming

independent of the proportion πj:

w̄` =

 k∑
j=1

Ej[f ′
`,i(w̄

ᵀ
`xi)]Cj

−1  k∑
j=1

Ej[f`,i(w̄ᵀ
`xi)]mj


Near optimal representations (NOR)

Let ε > 0, assume

mᵀ
imj = δi,j µ1 + (1 − δi,j)µ2 with µ1 = O(1) and µ2 = O(p−ε).

Cj = σ2
1,jIp + σ2

2,j

(
1p1ᵀ

p − Ip
)
with σ2

1,j = O (p−ε) and σ2
2,j = O(p−1−3ε).

Notably, these conditions ensure (as p → ∞) that the between-class means are

asymptotically orthogonal (maximize the between-class variance) and the within

class covariances asymptotically isotropic (independent features).

Asymptotic Softmax weight vectors under NOR
assumption

For near optimal representations, for sufficiently large p and letting ε → 0 in the

expression of the generalized labels y
(i)
` , the class-weight vectors are asymptot-

ically proportional to the centred class-wise means as

w̄` = γ` k e
−κµ1

1 + (k − 1) e−κµ1

m` − 1
k

k∑
j=1

mj

 + O‖·‖ (1) (1)

for some constant κ > 0 and γ` =
(∑k

j=1 σ
2
1,jEj[−f ′

`,i(w̄
ᵀ
`xi)]

)−1
≥ 4

k σ2
1,max

.

NOR in practice
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Correlation between w̄` and m̄`
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Conclusion

Our findings suggest three main procedures for efficient transfer learning: (i) use

of symmetric representation activations to ensure the near-optimal representa-

tions assumption; (ii) source model selection without training the Softmax layer;

(iii) initialization procedure which accelerates the training of the Softmax layer

as the target domain gets closer to the source domain.
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