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Random tensors with low-rank structure

Theoretical analysis of learning from data with hidden low-rank tensor

structure.

Quantification of performance gain between considering the low-rank tensor

structure versus treating data as vectors.

Setting & Data Model

We consider n data points: (x1 ⊗ x2 ⊗ x3)ijk = x1ix2jx3k

Xi ∈ Ca ⇔ Xi = (−1)aµ1 ⊗ · · · ⊗ µk + Zi ∈ Rp1×···×pk

where [Zi]i1...ik
∼ N (0, 1) i.i.d. and denoteM = µ1 ⊗ · · · ⊗ µk.

Generalizes the classical model (k = 1), i.e. xi = (−1)aµ1 + zi.

Even for k ≥ 2, the standard approach consists in flattening the data.
What is the optimal classifier? Theoretical misclassification?

Supervised Setting

Given X = [X1, . . . ,Xn] ∈ Rp1×···pk×n and y = [y1, . . . , yn] ∈ {−1, 1}n

Denote X = X(k+1) ∈ Rn×P with P = ∏k
i=1 pi and consider the Ridge classifier:

min
w

‖y − Xw‖2 + γ‖w‖2 ⇔ w∗ =
(
X>X + γI

)−1
X>y

For some γ � ‖X>X‖ (optimal for the above data model):

w = 1
√

np
X>y

where p = ∑k
i=1 pi. In tensor notations, the decision function is:

fR(X̃i) = 〈W, X̃i〉
C1
≶
C2

0 W ≡ 1
√

np
X ×k+1 y

with X̃i a test datum independent of X.

Assumption: pi = O(n) and ‖M‖ = O(1).

Data Flattening Performance

Theorem: For X̃i independent of X:

1
σ

(
fR(X̃i) − ma

) D−→ N (0, 1) ⇒ E = Q

(
|ma|

σ

)

where ma = (−1)a‖M‖2
√

n
p and σ =

√
n
p‖M‖2 + P

p .

Tensor-based Classification

The weight tensorW is a spiked random tensor:

W =
√

n

p

k⊗
i=1

µi + 1
√

p
Z

with Z = 1√
n

∑n
i=1 yiZi (Universality with CLT).

Tensor-Ridge classifier is defined as:

fTR(X̃i) =
〈

λ∗
k⊗

i=1
u∗

i , X̃i

〉
C1
≶
C2

0

where (best rank-one approximation ofW):

(
λ∗, {u∗

i }
k
i=1

)
= arg min

λ∈R+,ui∈Spi−1

∥∥∥∥∥∥W − λ
k⊗

i=1
ui

∥∥∥∥∥∥
2

F

Remark: The above MLE is NP-hard but feasible if ‖M‖ ≥ O(P 1/4/p1/2).

Tensor-based Performance

Theorem: For X̃i independent of X:

1
σ

(
fTR(X̃i) − ma

) D−→ N (0, 1) ⇒ E = Q

(
|ma|

σ

)

where ma = (−1)aσ‖M‖∏k
j=1 qj (σ) and f

(
σ, ‖M‖

√
n
p

)
= 0 with qj and f in [1].

Unsupervised Setting

Linear clustering: compute the left singular vector of:

X = X(k+1) = y ⊗ flatten(M) + Z ∈ Rn×P → ŷ

Tensor-based clustering: compute the best rank-one approximation of:

X = M ⊗ y + Z ∈ Rp1×···×pk×n → ŷ

Theorem: The estimated class for Xi is given by sign(ŷi):

1√
1 − α2

(√
nŷi − αyi

) D−→ N (0, 1) ⇒ E = Q

(
α√

1 − α2

)

Linear: α = κ
(
‖M‖

√
n

P+n, n
P+n

)−1
with κ in [1].

Tensor: α = qk+1 (λ∗) with f
(

λ∗, ‖M‖
√

n
p+n

)
= 0 (λ∗ spectral norm of X).

Simulations
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Figure 1. n = 200, tensor shape (15, 30, 20) and ‖M‖ = 3.
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Figure 2. n = 200, tensor shape (15, 30, 20) and ‖M‖ = 3.

Conclusion

This work analyzes learning from low-rank tensor data and shows

performance gains.

It applies random tensor theory to evaluate simple learning methods.

This paves the way for improving machine learning algorithms for

tensor-structured data.
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