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Abstract

This series of lectures aims to provide a brief introduction to the theory of random matrices and
tensors, with a focus on fundamental concepts and techniques for their analysis. In the first part of
the course, we will introduce the notion of the Stieltjes transform, a classical tool for characterizing the
spectral behavior of large random matrices. We will then present the proof of the classical semi-circle law
and the Marčenko-Pastur law in random matrices, using the resolvent method. Moving on, we will delve
into the analysis of spiked random matrices, which arise in various fields such as statistical physics, signal
processing, and machine learning. We will present techniques for computing their spectral properties and
characterize the related phase transitions. Finally, we will present an extension to the analysis of random
tensors, representing higher-order matrices generalizations. We will introduce the notions of singular
values and vectors for tensors to define a set of associated random matrix ensemble to random tensors,
based on which we will provide an analysis of spiked random tensors using the resolvent method. The
lectures will be self-contained and require only a basic knowledge of linear algebra, probability theory,
and functional analysis.

1 Properties of the Stieltjes transform and proof of the semi-circle
law with the resolvent method

This lecture introduces the notion of the Stieltjes transform and the related properties and provides proof
of the semicircle law for the GOE relying on the resolvent method.

1.1 Tools

1.1.1 Weak convergence

We start with the following definition of the notion of weak convergence which shall be used subsequently.
Let Cb(R) be the class of bounded functions on R.

Definition 1.1 (Weak convergence). We say that a sequence of probability measures (µn)n∈N converges
weakly to µ if ∫

R
f(x)dµn(x) −−−−→

n→∞

∫
R
f(x)dµ(x)

almost surely (a.s.) for any f ∈ Cb(R) and we write µn
w−−−−→

n→∞
µ.

Property 1.2. If µn is a probability measure and µn
w−−−−→

n→∞
µ then µ is also a probability measure. Indeed,

1 =

∫
R
1dµn(x) −−−−→

n→∞

∫
R
1dµ(x) = µ(R)

so we get µ(R) = 1 by uniqueness of the limit.
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1.1.2 The Stieltjes Transform

We will now introduce the main ingredient to study the spectral behavior of large random matrices.

Definition 1.3. Let µ be a probability measure on R. The Stieltjes transform denoted gµ of µ is defined by

gµ : C+ → C

z 7→ gµ(z) =

∫
R

dµ(λ)

λ− z

where C+ = {z ∈ C | ℑ[z] > 0}.

Let z = x+ iy with x, y ∈ R. We have that the mapping

λ 7→ 1

λ− z
=

λ− x

(λ− x)2 + y2
+ i

y

(λ− x)2 + y2
= ℜ

[
1

λ− z

]
+ iℑ

[
1

λ− z

]
is continuous and bounded. Since µ is finite, then gµ(z) is well-defined over C+. Furthermore, a Stieltjes
transform is identified by the fact that ℑ[gµ(z)] > 0 for all z ∈ C+.

Example 1.4. We have the following examples:

1. Let µ = δx the Dirac measure at point x, then gµ(z) =
1

x−z .

2. Let µn = 1
n

∑n
i=1 δλi

where λi are the eigenvalues of a symmetric matrix M . Then

gµn(z) =
1

n

n∑
i=1

1

λi − z
=

1

n
Tr

[
(M − zI)−1

]
where G(z) = (M − zI)−1 is the so-called resolvent matrix of M .

We have the following theorem which shows the equivalence between the weak convergence of a sequence
of probability measures and the almost sure convergence of the underlying Stieltjes transforms.

Theorem 1.5. Let (µn)n∈N be a sequence of probability measures. Then

µn
w−−−−→

n→∞
µ ⇔ gµn

(z)
a.s.−−−−→

n→∞
gµ(z) for all z ∈ C+

An essential aspect of the Stieltjes transform is that there exists an inverse formula that allows the
characterization of the underlying probability measure. Indeed, we have the following theorem.

Theorem 1.6 (Inversion Formula). Let µ be a probability measure. Then, for all a, b ∈ R, we have

1

2
[µ({a}) + µ({b})] + µ(]a, b[) = lim

y→0+

1

π

∫ b

a

ℑ [gµ(x+ iy)] dx

Specifically, the density function of µ is given by µ(dx) = limy→0+
1
πℑ [gµ(x+ iy)] dx.

Proof. We already know that

ℑ [gµ(x+ iy)] =

∫
R
ℑ
[

1

λ− x− iy

]
dµ(λ) =

∫
R

y

(λ− x)2 + y2
dµ(λ)

Thus, ∫ b

a

ℑ [gµ(x+ iy)] dx =

∫
R

∫ b

a

y

(λ− x)2 + y2
dxdµ(λ) =

∫
R
f(y, λ)dµ(λ).

2



2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
De

ns
ity

n = 100

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity

n = 500

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity

n = 1000

Figure 1: Empirical histogram of the eigenvalues of M from GOE for different values of the dimension n and
the limiting semicircle law.

where f(y, λ) = arctan
(

b−λ
y

)
− arctan

(
λ−a
y

)
. Note that |f(y, λ)| ≤ π for all y > 0 and λ ∈ R, and we have

f(y, λ) → f(λ) as y → 0+, where

f(λ) =


0 if λ /∈ [a, b]

π/2 if λ ∈ {a, b}
π if λ ∈]a, b[

Therefore, by the dominated convergence theorem, we have

lim
y→0+

1

π

∫ b

a

ℑ [gµ(x+ iy)] dx = lim
y→0+

1

π

∫
R
f(y, λ)dµ(λ) =

1

π

∫
R
f(λ)dµ(λ) =

1

2
[µ({a}) + µ({b})] + µ(]a, b[).

1.2 Semicircle law for GOE

We consider the Gaussian Orthogonal Ensemble (GOE) which stands for the ensemble of symmetric random
matrices with standard Gaussian i.i.d. entries. Specifically, let M = 1√

n
(mij)

n
i,j=1 such that (mij)j≤i are

independent standard Gaussian random variable N (0, 1).
Therefore, we are interested in describing the limiting measure of the empirical spectral measure µn of

M when n → ∞, where

µn =
1

n

n∑
i=1

δλi

with λ1, . . . , λn are the eigenvalues of M . Indeed, our aim is to prove that

µn
w−−−−→

n→∞
µ (a.s.)

where µ is the semicircle law with density function

µ(dx) =
1

2π

√
4− x2dx

defined in the compact support [−2, 2]. Figure 1 illustrates the convergence of µn to µ when n grows large.

As we saw from Theorem 1.5, proving µn
w−−−−→

n→∞
µ is equivalent to show that for all z ∈ C+

gµn(z)
a.s.−−−−→

n→∞
g(z) (1)

where g is the Stieltjes transform of µ given by

g(z) =
−z +

√
z2 − 4

2
z /∈ [−2, 2]
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1.2.1 Strategy of the proof

The proof of equation 2 requires two steps:

1. First, we show that gµn
(z) behaves asymptotically as E [gµn

(z)] for all z ∈ C+, i.e.

|gµn
(z)− E [gµn

(z)] | a.s.−−−−→
n→∞

0

which can be obtained by concentration inequalities (we will show this in Lecture 2).

2. Prove that, for all z ∈ C+, E [gµn
(z)] −−−−→

n→∞
g(z).

1.2.2 Derivation of step 2

We now consider the proof of step 2. Indeed, by definition, we have

E [gµn
(z)] =

1

n
E [TrG(z)]

where G(z) = (M − zI)
−1

. Moreover, we have

(M − zI)G(z) = I ⇒ MG(z)− zG(z) = I

Applying the normalized trace operator and tacking the expectation, we get1

1

n
E [Tr(MG)]− z

n
E [TrG] = 1 ⇔ 1

n
E [Tr(MG)]− zE [gµn

(z)] = 1

Therefore, we need to develop the term E [Tr(MG)]. Indeed, we have

E [Tr(MG)] =
1√
n

∑
ij

E[mijGji] =
1√
n

∑
ij

E
[
∂Gji

∂mij

]

where the last equality is obtained by Stein’s lemma, i.e., E[Xf(X)] = E[f ′(X)] if X ∼ N (0, 1). Moreover,
using the fact that

∂G

∂mij
= −G

∂M

∂mij
G

we have ∂Gkl

∂mij
= − 1√

n
(GkiGjl +GliGjk) for i ̸= j. Therefore, we find

E [Tr(MG)] = − 1

n

∑
ij

E [GiiGjj +GijGji] = − 1

n
E
[
Tr(G)2

]
− 1

n
E
[
Tr(G2)

]
Besides, since 1

(λi−z)2 ≤ 1
ℑ[z]2 , we have

∣∣∣∣ 1n2
E
[
Tr(G2)

]∣∣∣∣ =
∣∣∣∣∣ 1n2

n∑
i=1

1

(λi − z)2

∣∣∣∣∣ ≤ 1

nℑ[z]2
−−−−→
n→∞

0

and as we will see in Lecture 2 by concentration arguments, the contribution of the term E
[(

1
n TrG

)2]
is

the same as E
[(

1
n TrG

)]2
. Plugging all together, we, therefore, find that

E [gµn
(z)]

2
+ zE [gµn

(z)] + 1 −−−−→
n→∞

0 for all z ∈ C+

1We will omit the dependence of G on z in the notations for convenience.
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Moreover, be the definition of the Stieltjes transform, gµn(z) is constrained in the closed ball of radius 1
|ℑ[z]| .

Then there exists a sub-sequence gµnk
(z) that converges to a limit g(z) satisfying

g(z)2 + zg(z) + 1 = 0 ⇒ g(z) =
−z ±

√
z2 − 4

2

and the Stieltjes transform is g(z) = −z+
√
z2−4

2 since ℑ[g(z)] > 0 for ℑ[z] > 0. Hence, we find

E [gµn
(z)] −−−−→

n→∞
g(z).

2 Proof of the Marchenko-Pastur law using the resolvent method
in the Gaussian case and universality

2.1 Tools

We recall Stein’s lemma in the following Lemma.

Lemma 2.1 (Gaussian integration by part). Let F : Rn → R be some differentiable function with at most
polynomial growth. For X1, . . . , Xn being i.i.d. N (0, 1) random variables, we have

E [XiF(X1, . . . , Xn)] = E
[
∂F
∂Xi

]
The above lemma is a simple generalization of the one-dimensional case. In fact, if X ∼ N (0, 1), then

E [XF(X)] =

∫
R
xF(x)

1√
2π

e−x2/2dx =
[
−F(x)e−x2/2

]+∞

−∞
+

∫
R
F ′(x)

1√
2π

e−x2/2dx = E [F ′(X)]

We will also be interested in controlling the variance of some F(X1, . . . , Xn) which can be obtained thanks
to Poincare’s inequality.

Lemma 2.2 (Poincare’s inequality). Let F : Rn → R be some differentiable function with at most polynomial
growth. For X1, . . . , Xn being i.i.d. N (0, 1) random variables, we have

Var [F(X1, . . . , Xn)] ≤
n∑

i=1

E
∣∣∣∣ ∂F∂Xi

∣∣∣∣2
Lemma 2.3 (Borel-Cantelli lemma). Let (En)n be a sequence of events in Ω. If

∑∞
n=1 P [En] < ∞ then

P [lim supn En] = 0.

Lemma 2.4 (Block matrix inverse formula). Let A,D invertible matrices and B,C rectangular matrices,
we have (

A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(A−BD−1C)−1CA−1 (D − CA−1B)−1

)
Lemma 2.5 (Trace Lemma). Let x ∈ Rp a random vector with i.i.d. entries with zero mean, unit variance
and finite 2k moments. For A ∈ Rp×p deterministic (or independent from x), we have

E

[∣∣∣∣1px⊤Ax− 1

p
TrA

∣∣∣∣k
]
≤ O

(
∥A∥p

pk/2

)
In particular, if the spectral norm of A is bounded, then 1

px
⊤Ax− 1

p TrA → 0 as p → ∞ almost surely.

Lemma 2.6 (Rank-one perturbation). Let A,B ∈ Rp symmetric matrices and let µ be the empirical spectral
measure of A. For x ∈ Rp, α > 0 and z ∈ C \ S(µ)∣∣∣∣1p Tr

[
B
(
A+ αxx⊤ − zIp

)−1
]
− 1

p
Tr

[
B (A− zIp)

−1
]∣∣∣∣ ≤ 1

p

∥B∥
dist(z,S(µ))

In particular, if the spectral norm of B is bounded, then as p → ∞
1

p
Tr

[
B
(
A+ αxx⊤ − zIp

)−1
]
− 1

p
Tr

[
B (A− zIp)

−1
]
→ 0
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2.2 Concentration of the empirical Stieltjes transform: the case of semicircle
law

In this section, we aim to prove the following parts to complete the proof of the semicircle law.

1. Concentration of the empirical Stieltjes transform around its expectation, i.e. for all z ∈ C+

|gµn
(z)− E [gµn

(z)] | a.s.−−−−→
n→∞

0

2. Show that E
[
gµn

(z)2
]
has the same contribution as E [gµn

(z)]
2
.

We would like to prove that for all z ∈ C+ and any ε > 0,

∞∑
n=1

P [|gµn
(z)− E [gµn

(z)]| ≥ ε] < ∞

Indeed, through Poincare’s inequality, we have

Var [gµn
(z)] ≤ 1

n2

∑
ij

E
∣∣∣∣∂ TrG

∂mij

∣∣∣∣2 =
1

n2

∑
ij

E

∣∣∣∣∣∑
k

∂Gkk

∂mij

∣∣∣∣∣
2

≤ 4

n3

∑
ij

E

∣∣∣∣∣∑
k

GkiGkj

∣∣∣∣∣
2

=
4

n3

∑
ij

E
∣∣[G2]ij

∣∣2 =
4

n3
E

[∑
i

[G4]ii

]
=

4

n3
E
[
Tr(G(z)4)

]
≤ 4

n2ℑ[z]4

By Markov’s inequality and the Borel-Cantelli lemma, we obtain

|gµn
(z)− E [gµn

(z)] | a.s.−−−−→
n→∞

0

Moreover, since Var[X] = E[X2]− E[X]2, we obtain

E
[
gµn

(z)2
]
= E [gµn

(z)]
2
+Oz

(
n−2

)
2.3 Sample covariance in low versus high dimension

In this section, we illustrate the behavior of the sample covariance matrix in a low versus a high dimensional
regime. Specifically, let x1, . . . , xn ∈ Rp be a set of i.i.d. random vectors such that xi ∼ N (0, Ip). The
maximum likelihood estimator of the population covariance matrix (here Ip) is given by the sample covariance
matrix

M =
1

n

n∑
i=1

xix
⊤
i =

1

n
XX⊤

where X = [x1, . . . , xn] ∈ Rp×n. With the strong law of large numbers, M −−−−→
n→∞

Ip almost surely or

equivalently, the spectral norm ∥M − Ip∥ −−−−→
n→∞

0. Besides, if p
n −−−−→

n→∞
γ ∈ (0,∞), then

∥M − Ip∥ ��→ 0

In particular, suppose that γ > 1, then we have the joint wise convergence

max
i,j

|(M − Ip)ij | = max
i,j

∣∣∣∣ 1nXj,:X
⊤
i,: − δij

∣∣∣∣ −−−−→n→∞
0 (a.s.)

However, there is an eigenvalue mismatch since

0 = λ1(M) = · · · = λp−n(M) ≤ λp−n+1(M) ≤ · · · ≤ λp(M)

1 = λ1(Ip) = · · · = λp(Ip)
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Figure 2: Empirical histogram of the eigenvalues of M from Wishart distribution for different values of the
dimensions n, p and the limiting Marchenko-Pastur law.

2.4 Marchenko-Pastur Law

We consider now the following random matrix model

M =
1

n
XX⊤

where X = (Xij)
p,n
i,j=1 ∈ Rp×n is a random matrix with i.i.d. N (0, 1) entries. Therefore, we are interested in

describing the limiting measure of the empirical spectral measure µn of M when n → ∞ with p
n −−−−→

n→∞
γ ∈

(0,∞), where

µn =
1

n

n∑
i=1

δλi

with λ1, . . . , λn are the eigenvalues of M . Indeed, our aim is to prove that

µn
w−−−−→

n→∞
µγ (a.s.)

where µγ is the Marchenko-Pastur law with density function

µγ(dx) =

(
1− 1

γ

)
+

δ0(dx) +

√
(λ+ − x)(x− λ−)

2πγx
1[λ−,λ+](x)dx

where λ± = (1 ±√
γ)2. Figure 2 illustrates the convergence of µn to µγ when n grows large with different

ratios p/n.

As we saw from Theorem 1.5, proving µn
w−−−−→

n→∞
µγ is equivalent to show that for all z ∈ C+

gµn
(z) −−−−→

n→∞
g(z) (a.s.) (2)

where g is the Stieltjes transform of µγ given by

g(z) =
− [z + (γ − 1)] +

√
(z − λ+)(z − λ−)

2zγ
z /∈ [λ−, λ+]

Again, we denote the resolvent of M by

G(z) = (M − zIp)
−1 for z ∈ C+

7



We make the assumption that p
n −−−−→

n→∞
γ ∈ (0,∞). We have the identity

MG(z)− zG(z) = Ip ⇒ 1

p
E [Tr (MG)]− zE [gµn(z)] = 1

where gµn
(z) = 1

p TrG(z). Developing the expectation 1
pE [Tr (MG)], we get

1

p
E [Tr (MG)] =

1

np

∑
ijk

E [XikXjkGji] =
1

np

∑
ijk

E
[
∂Xjk

∂Xik
Gji

]
+

1

np

∑
ijk

E
[
Xjk

∂Gji

∂Xik

]

=
1

np

∑
ijk

E [δijGji] +
1

np

∑
ijk

E
[
Xjk

∂Gji

∂Xik

]

= E [gµn
(z)] +

1

np

∑
ijk

E
[
Xjk

∂Gji

∂Xik

]
And from the identity

∂G

∂Xij
= −G

∂M

∂Xij
G

We first have

∂Mkl

∂Xij
=

1

n

∑
m

∂(XkmXlm)

∂Xij
=

1

n

∑
m

∂Xkm

∂Xij
Xlm +

1

n

∑
m

Xkm
∂Xlm

∂Xij
=

1

n
δikXlj +

1

n
Xkjδil

Hence

∂Gab

∂Xij
= −

∑
kl

Gak
∂Mkl

∂Xij
Glb = − 1

n

∑
kl

GakδikXljGlb −
1

n

∑
kl

GakXkjδilGlb

= − 1

n
Gai(GX)bj −

1

n
Gbi(GX)aj

Therefore

∂Gij

∂Xik
= − 1

n
Gii(GX)jk − 1

n
Gij(GX)ik

So, we find

1

np

∑
ijk

E
[
Xjk

∂Gji

∂Xik

]
= − 1

n2p

∑
ijk

E [XjkGii(GX)jk]−
1

n2p

∑
ijk

E [XjkGij(GX)ik]

= − 1

n2p
E
[
Tr(G) Tr(GXX⊤)

]
− 1

n2p
E
[
Tr(GXX⊤G))

]
= −E

[
1

p
Tr(G)

1

n
Tr

(
G
XX⊤

n

)]
− 1

n
E
[
1

p
Tr

(
G
XX⊤

n
G

)]
︸ ︷︷ ︸

−−−−→
n→∞

0

= −E
[
1

p
Tr(G)

1

n
Tr (G (M − zIp + zIp))

]
+Oz(n

−1) = −E
[
1

p
Tr(G)

(
1

n
Tr(Ip) +

z

n
Tr(G)

)]
+Oz(n

−1)

= −E
[
gµn(z)

( p

n
+

zp

n
gµn(z)

)]
+Oz(n

−1) = − p

n
E [gµn(z)]− z

p

n
E
[
gµn(z)

2
]
+Oz(n

−1)

Therefore, we find that the limiting Stieltjes transform satisfies the equation

zγg(z)2 + (z − 1 + γ)g(z) + 1 = 0 ⇒ g(z) =
1− z − γ +

√
(z − 1 + γ)2 − 4zγ

2zγ

8



where

(z − 1 + γ)2 − 4zγ = z2 + 2z(γ − 1) + (γ − 1)2 − 4zγ

= z2 − 2z(γ + 1) + (γ − 1)2

= (z − (γ + 1))2 − 4γ

= [z − (γ + 1 + 2
√
γ)] [z − (γ + 1− 2

√
γ)]

= (z − λ+)(z − λ−)

where λ± = (1±√
γ)2. Hence, we find

g(z) =
− [z + (γ − 1)] +

√
(z − λ+)(z − λ−)

2zγ

Now, we show that

µγ(dx) =

(
1− 1

γ

)
+

δ0(dx) +

√
(λ+ − x)(x− λ−)

2πγx
1[λ−,λ+](x)dx

• We first show that µγ({0}) =
(
1− 1

γ

)
+
. Indeed, we have2 µγ({0}) = limy→0 yℑ[g(iy)], and since

lim
y→0

√
(iy − λ+)(iy − λ−) = −

√
λ+λ−

We have

g(iy) =
−[iy + (γ − 1)]−

√
λ+λ− + o(y)

2iyγ

Thus

lim
y→0

yℑ[g(iy)] = γ − 1

2γ
+

√
λ+λ−

2γ
=

1

2

[(
1− 1

γ

)
+

∣∣∣∣1− 1

γ

∣∣∣∣] =

(
1− 1

γ

)
+

• Now we compute µγ(]λ−, λ+]). Let x ∈]λ−, λ+] and z ∈ C+ with z → x. Thus,

|(z − λ+)(z − λ−)| → (λ+ − x)(x− λ−) and arg[(z − λ+)(z − λ−)] → π

Thus limz→x

√
(z − λ+)(z − λ−) = i

√
(λ+ − x)(x− λ−), and we find

lim
z→x

1

π
ℑ[g(z)] =

√
(λ+ − x)(x− λ−)

2γπx

2.5 Universality with concentration results

This section considers a different approach to proving the convergence of µn to the Marchenko-Pastur Law
while relaxing the Gaussianity assumption to any distribution with a bounded fourth-order moment. Indeed,

gµn
(z) =

1

p
Tr (M − zIp)

−1
=

1

p

p∑
i=1

[(
1

n
XX⊤ − zIp

)−1
]
ii

Denoting

X =

[
y⊤

Y−1

]
∈ Rp×n

2For z = ρeiθ,
√
z =

√
ρei

θ
2 for θ ∈ (0, 2π). Moreover, limθ→0

√
z =

√
ρ and limθ→2π

√
z = −√

ρ.

9



We have (
1

n
XX⊤ − zIp

)−1

=

([
1
ny

⊤y − z 1
ny

⊤Y−1
1
nY−1y

1
nY−1Y

⊤
−1 − zIp−1

])−1

Therefore, by block matrix inverse formula, we have[(
1

n
XX⊤ − zIp

)−1
]
11

=
1

−z − z 1
ny

⊤
(
1
nY

⊤
−1Y−1 − zIn

)−1
y

And, by trace Lemma, as n, p → ∞ we have[(
1

n
XX⊤ − zIp

)−1
]
11

− 1

−z − z 1
n Tr

(
1
nY

⊤
−1Y−1 − zIn

)−1

a.s.−−−−→
n→∞

0

Since, X⊤X = Y ⊤
−1Y−1 + yy⊤, by rank-one perturbation Lemma, we have[(

1

n
XX⊤ − zIp

)−1
]
11

− 1

−z − z 1
n Tr

(
1
nX

⊤X − zIn
)−1

a.s.−−−−→
n→∞

0

And from3 1
n Tr

(
1
nX

⊤X − zIn
)−1

= 1
n Tr

(
1
nXX⊤ − zIp

)−1 − n−p
n

1
z , we find[(

1

n
XX⊤ − zIp

)−1
]
11

− 1

1− p
n − z − z 1

n Tr
(
1
nXX⊤ − zIp

)−1

a.s.−−−−→
n→∞

0

Therefore, by repeating for the remaining entries and averaging, we obtain

gµn
(z)− 1

1− p
n − z − z p

ngµn
(z)

a.s.−−−−→
n→∞

0

Hence, gµn
(z)

a.s.−−−−→
n→∞

g(z), with g(z) solution of

g(z) =
1

1− γ − z − zγg(z)
⇔ zγg(z)2 + (z − 1 + γ)g(z) + 1 = 0

3 Analysis of random spiked matrices and characterization of the
related phase transitions

3.1 Notations

We denote by D(µ, σ2) any distribution with mean µ, variance σ2 and bounded 2k moments for any k ∈ N.
We denote by Bn = {u ∈ Rn | ∥u∥ < ∞} the set of vectors in Rn with bounded ℓ2 norms. We denote by
Sn−1 = {u ∈ Rn | ∥u∥ = 1} the unit sphere in Rn.

3.2 Tools

Definition 3.1 (Deterministic equivalent). Let G(z) ∈ Rn×n and Ḡ(z) ∈ Rn×n be random and deterministic
resolvents respectively. We say that Ḡ(z) is a deterministic equivalent of G(z) and we denote G(z) ∼ Ḡ(z)
if for any u, v ∈ Bn independent of G(z)

u⊤G(z)v − u⊤Ḡ(z)v
a.s.−−−−→

n→∞
0

3The matrices XX⊤ and X⊤X share the same non-zero eigenvalues and
∑p

i=1
1

λi(XX⊤)−z
=

∑n
i=1

1
λi(X⊤X)−z

+(p−n) 1
0−z

.

10



Lemma 3.2 (Woodbury matrix identity). Let A ∈ Rn×n and B ∈ Rk×k invertible matrices and U ∈ Rn×k

and V ∈ Rk×n. Then

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

Lemma 3.3 (Sherman-Morison). Let A ∈ Rn×n invertible, α > 0 and u, v ∈ Rn. Then

(A+ αuv⊤)−1 = A−1 − αA−1uv⊤A−1

1 + αv⊤A−1u

3.3 Spiked random matrices

This section presents the behavior of spiked random matrices of the form M = L + W where L is a low-
rank (signal) matrix and W is random (noise) matrix. These models find many applications in signal
processing and modern machine learning. Typically, one is interested in estimating the low-rank component
L from a realization of the random matrix M . RMT allows the characterization of the necessary conditions
(phase transition) under which signal recovery is possible and further characterizes the performance of such
estimation of L.

For instance, for L = βxx⊤ and W a Wigner random matrix. Computing the principal component of
M = βxx⊤ +W , i.e., the eigenvector of M corresponding to its largest eigenvalue provides an estimator u
of x and we are typically interested in studying the following:

• Phase transition: Is there a minimum value βc for β below which signal recovery is impossible?

• Performance recovery: Evaluate the alignment |u⊤x|2 between the true signal x and its estimator u in
terms of β.

We will see that RMT allows addressing the above questions. In particular, given λ the largest eigenvalue of
M , the alignment |u⊤x|2 can be expressed through a Cauchy integral involving the resolvent of M . Precisely,

|u⊤x|2 = − 1

2iπ

∮
Cλ

x⊤G(z)xdz

where G(z) = (M−zIn)
−1 and Cλ is a positively oriented contour surrounding the eigenvalue λ. Specifically,

RMT will be useful for providing a consistent estimation of the quadratic form x⊤G(z)x, through the notion
of deterministic equivalents as per Definition 3.1.

3.3.1 Wigner model

We start by analyzing the rank-one spiked Wigner model which is given by

Mβ = βxx⊤ +W with W =
1√
n
X ∈ Rn×n

where Xij = Xji ∼ D(0, 1), x ∈ Sn−1 and β ≥ 0. We further denote the resolvent of Mβ by

Gβ(z) = (Mβ − zIn)
−1

Deterministic equivalent: Our aim now is to find a deterministic equivalent for Gβ(z). In particular, as
we saw in Lecture 1, we first have for any z ∈ C\]− 2, 2[

G0(z) ∼ g(z)In with g(z) =
−z +

√
z2 − 4

2

And by Sherman-Morison Lemma, we have

Gβ(z) = G0(z)−
βG0(z)xx

⊤G0(z)

1 + βx⊤G0(z)x

11
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Figure 3: Wigner model - (a) The function β 7→ β+ 1
β varying β. (b) Limiting spectral measure and isolated

spike for β = 3.

Let u, v ∈ Bn, we therefore have

u⊤Gβ(z)v = u⊤G0(z)v −
βu⊤G0(z)xx

⊤G0(z)v

1 + βx⊤G0(z)x

a.s.−−−−→
n→∞

g(z)u⊤v − βg2(z)u⊤xx⊤v

1 + βg(z)∥x∥2

Hence, we obtain (since ∥x∥ = 1)

Gβ(z) ∼ g(z)In − βg2(z)

1 + βg(z)
xx⊤

Phase transition: An isolated eigenvalue (or spike) appears in the spectrum of Mβ when the above
deterministic equivalent gets singular. Indeed, to find the position of the spike λmax, it suffices to solve the
equation 1 + βg(z) = 0 for z /∈ (−2, 2). In fact,

1 + βg(z) = 0 ⇒
√

z2 − 4 = z − 2

β
⇒ z

β
=

1

β2
+ 1 ⇒ λmax = β +

1

β

Moreover, to obtain the critical value βc of β above which a spike appears in the spectrum of Mβ , we remark

that λmax is a convex function of β (see Fig. 3), therefore βc corresponds to λ′
max(β) = 0 implying βc = 1 .

Asymptotic alignment:

|u⊤x|2 =
−1

2iπ

∮
Cλmax

x⊤Gβ(z)xdz
a.s.−−−−→

n→∞

−1

2iπ

∮
Cλmax

g(z)

1 + βg(z)
dz = −Resλmax

{
g(z)

1 + βg(z)

}
where

Resλmax

{
g(z)

1 + βg(z)

}
= lim

z→λmax

(z − λmax)g(z)

1 + βg(z)
=

g(λmax)

βg′(λmax)

From 1 + βg(λmax) = 0, we have g(λmax) = − 1
β . Since g(z) satisfies g2(z) + zg(z) + 1 = 0, taking the

derivative, we have 2g′(z)g(z) + g(z) + zg′(z) = 0, hence g′(z) = −g(z)
z+2g(z) . Therefore,

g′(λmax) =
1/β

β + 1/β − 2/β
=

1

β2 − 1

From which we obtain

Resλmax

{
g(z)

1 + βg(z)

}
=

−1/β

β/(β2 − 1)
=

1− β2

β2
=

1

β2
− 1
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Figure 4: Wigner model - (a) Asymptotic spike λmax(β) in terms of β. (b) Asymptotic alignment in terms
of β.

Therefore, for β ≥ 1

|u⊤x|2 a.s.−−−−→
n→∞

(
1− 1

β2

)
1β≥1

3.3.2 Wishart model

We now consider the rank-one spiked Wishart model which is given by

Yβ = βxy⊤ +
1√
n
X ∈ Rp×n

Mβ = YβY
⊤
β

where Xij ∼ D(0, 1), x ∈ Sp−1, y ∈ Sn−1 and β ≥ 0. Again, we denote the resolvent of Mβ by, for z ∈ C+

Gβ(z) = (Mβ − zIp)
−1

We further assume that p
n −−−−→

n→∞
γ ∈ (0,∞) and denote λ± = (1±√

γ)2.

Deterministic equivalent: As we saw in Lecture 2, we have for any z ∈ C \ (λ−, λ+)

G0(z) ∼ g(z)Ip with g(z) =
−(z + (γ − 1)) +

√
(z − λ+)(z − λ−)

2γz

Denote

ϕ =
1√
n
Xy, U = [βx, ϕ] ∈ Rp×2, B =

(
1 1
1 0

)
, B−1 =

(
0 1
1 −1

)
The matrix Mβ expresses as

Mβ =
1

n
XX⊤ + UBU⊤

Therefore, by Woodbury matrix identity, we have

Gβ(z) = G0(z)−G0(z)U
[
B−1 + U⊤G0(z)U

]−1
U⊤G0(z)

= G0(z)−G0(z)U

(
β2x⊤G0(z)x 1 + βx⊤G0(z)ϕ

1 + βx⊤G0(z)ϕ −1 + ϕ⊤G0(z)ϕ

)−1

U⊤G0(z)
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Figure 5: Wishart model - (a) The function β 7→ (1+β2)
(
1 + γ

β2

)
varying β. (b) Limiting spectral measure

and isolated spike for β = 2 and γ = 1
2 .

Denote G̃0(z) =
(
1
nX

⊤X − zIn
)−1

, we have

x⊤G0(z)x
a.s.−−−−→

n→∞
g(z)x⊤x = g(z)

x⊤G0(z)ϕ = o(1)

ϕ⊤G0(z)ϕ =
1

n
y⊤X⊤G0(z)Xy =

1

n
y⊤G̃0(z)X

⊤Xy = y⊤G̃0(z)

(
1

n
X⊤X − zIn + zIn

)
y

= ∥y∥2 + zy⊤G̃0(z)y = 1 + zy⊤G̃0(z)y

We can show as in Lecture 2, that G̃0(z) ∼ g̃(z)In with g̃(z) = γg(z) + γ−1
z . Hence, we further have

y⊤G̃0(z)y
a.s.−−−−→

n→∞
g̃(z)y⊤y = g̃(z)

From this, we get(
β2x⊤G0(z)x 1 + βx⊤G0(z)ϕ

1 + βx⊤G0(z)ϕ −1 + ϕ⊤G0(z)ϕ

)−1
a.s.−−−−→

n→∞

(
β2g(z) 1

1 zg̃(z)

)−1

=
1

zβ2g(z)g̃(z)− 1

(
zg̃(z) −1
−1 β2g(z)

)
Therefore, we find the following deterministic equivalent for Gβ(z)

Gβ(z) ∼ g(z)Ip −
β2g2(z)zg̃(z)

β2zg(z)g̃(z)− 1
xx⊤

Moreover, multiplying g̃(z) = γg(z) + γ−1
z by zg(z), we have

zg(z)g̃(z) = zγg2(z) + (γ − 1)g(z)

and by the definition of g(z), it satisfies zγg2(z) = −1 + (1− z − γ)g(z). Hence,

zg(z)g̃(z) = −1 + (1− z − γ)g(z) + (γ − 1)g(z) = −(1 + zg(z))

Thus,

β2g2(z)zg̃(z)

β2zg(z)g̃(z)− 1
=

β2g(z)(1 + zg(z))

β2(1 + zg(z)) + 1
=

β2g2(z)

β2g(z) + g(z)
1+zg(z)

multiplying ·/· by g(z)

1 + zg(z)

Besides g(z)
1+zg(z) = 1 + γg(z) and we finally get

Gβ(z) ∼ g(z)Ip −
β2g2(z)

(β2 + γ)g(z) + 1
xx⊤
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Figure 6: Wishart model - (a) Asymptotic spike λmax(β) in terms of β. (b) Asymptotic alignment in terms
of β. We choose γ = 1

2 .

Phase transition: To find the position of the spike λmax, we solve the equation (β2 + γ)g(z) + 1 = 0 for
z /∈ (λ−, λ+). We therefore get

1 + (β2 + γ)g(z) = 0 ⇒ z = β2 + γ + 1 +
γ

β2
⇒ λmax =

(
1 + β2

)(
1 +

γ

β2

)

And the phase transition can be obtained by solving ∂λmax

∂β = 0 (see Fig. 5) which implies βc = γ
1
4 .

Asymptotic alignment: Let u be the eigenvector of Mβ corresponding to its largest eigenvalue, then

|u⊤x|2 =
−1

2iπ

∮
Cλmax

x⊤Gβ(z)xdz
a.s.−−−−→

n→∞

−1

2iπ

∮
Cλmax

(1 + γg(z))g(z)

1 + (β2 + γ)g(z)
dz = −Resλmax

{
(1 + γg(z))g(z)

1 + (β2 + γ)g(z)

}
where

Resλmax

{
(1 + γg(z))g(z)

1 + (β2 + γ)g(z)

}
= lim

z→λmax

(z − λmax)(1 + γg(z))g(z)

1 + (β2 + γ)g(z)
=

(1 + γg(λmax))g(λmax)

(β2 + γ)g′(λmax)

From 1+(β2+γ)g(λmax) = 0, we have g(λmax) =
−1

β2+γ . Since g(z) satisfies zγg
2(z)+(γ+z−1)g(z)+1 = 0,

taking the derivative w.r.t. z, we get g′(z) = −g(z)(1+γg(z))
2zγg(z)+γ+z−1 . Putting all together, we obtain

Resλmax

{
(1 + γg(z))g(z)

1 + (β2 + γ)g(z)

}
=

γ − β4

β2(β2 + γ)

Finally,

|u⊤x|2 a.s.−−−−→
n→∞

1− γβ−4

1 + γβ−2
1
β≥γ

1
4

4 Extension to spiked random tensors

Refer to the following material for the derivations:

• Paper: https://arxiv.org/abs/2112.12348

• Slides: https://melaseddik.github.io/files/slides/slides_random_tensors.pdf

15

https://arxiv.org/abs/2112.12348
https://melaseddik.github.io/files/slides/slides_random_tensors.pdf

	Properties of the Stieltjes transform and proof of the semi-circle law with the resolvent method
	Tools
	Weak convergence
	The Stieltjes Transform

	Semicircle law for GOE
	Strategy of the proof
	Derivation of step 2


	Proof of the Marchenko-Pastur law using the resolvent method in the Gaussian case and universality
	Tools
	Concentration of the empirical Stieltjes transform: the case of semicircle law
	Sample covariance in low versus high dimension
	Marchenko-Pastur Law
	Universality with concentration results

	Analysis of random spiked matrices and characterization of the related phase transitions
	Notations
	Tools
	Spiked random matrices
	Wigner model
	Wishart model


	Extension to spiked random tensors

