

From Outage Probability to ALOHA MAC Layer Performance Analysis in Distributed Wireless Sensor Networks

MEA. Seddik^{1,2}, V. Toldov^{2,3}, L. Clavier^{1,3}, N. Mitton² ¹IMT Lille-Douai, ²Inria, ³IRCICA USR CNRS 3380

WCNC'18, 16 Apr, Barcelona, Spain

Outline

Introduction: Wireless Sensor Networks (WSNs)

Problem Statement & Outage Probability

Slotted-ALOHA *with* Channel Reservation and *Without* Interferences

Slotted-ALOHA with Channel Reservation and Interferences

Experimental Analysis and Main Result

Introduction: Wireless Sensor Networks (WSNs)

Nowadays, WSNs are everywhere!

- Environmental applications.
- Home applications.
- Medical applications, etc.

LIRIMA PREDNET Project

Even Rhinos need smartphones!

Challenges behind WSNs

- ► Keep the network up for several years (5-10 years).
- ► Generally the deployed architectures are distributed ⇒ Interferences! (partially responsible for the loss of energy).

To face these challenges

Two directions are natural:

- Use different sources of energy (solar for example).
- Optimizing the hardware and the software.

The software concerns essentially:

- The physical layers.
- The Medium Access Control (MAC) Layer.

In this work, we study:

- The influence of the MAC layer on the network performance.
 - In particular, we address the following question:

How many channels do we need to achieve high performance distributed wireless sensor network?

Problem Statement & Outage Probability

MAC Protocol: Slotted-ALOHA

- Multiple nodes and a unique BTS.
- ► Distributed access policy ⇒ the nodes make the decision (randomly) to transmit on their own (e.g. Slotted-ALOHA MAC protocol).

Multiple nodes could choose the same channel \Rightarrow Interferences!

Interferences quantification: Outage Probability

The probability that the signal-to-interference-plus-noise-ratio (SINR) is less than a given threshold $\tau > 0$,

 $Op = \mathbb{P}\{SINR < \tau\},\$

where, $SINR(o, r) = S(o, r)/(I(o) + N_0)$.

Assumptions

- Π_λ ⊂ ℝ² Homogeneous Poisson Point Process (HPPP) spacial distribution of the nodes with density λ.
- The wireless channel consists of path loss attenuation with no fading:

$$\forall X_i \in \Pi_{\lambda}, P_i = P_e \|X_i\|^{-\alpha},$$

where α , $P_e > 0$.

The Medium Access Control strategy is a Slotted-ALOHA, the communicating nodes have a density λ* s.t.

$$\lambda^* = \frac{2T_s}{T} \frac{1}{N_c} \lambda.$$

Expression of Op

Proposition

The Outage probability for Slotted-ALOHA MAC protocol is given by the following expression:

$$Op^{SA} \equiv \lim_{N \to +\infty} \frac{1}{N} \sum_{j=1}^{N} \mathbb{I} \langle \Sigma_{\alpha}^{j} > \frac{\xi}{(\lambda^{*}\pi)^{\alpha/2}} \rangle$$

where $\mathbb{I}\langle .\rangle$ is the indicator function, $\xi=\frac{r^{-\alpha}}{\tau}-\frac{N_0}{P_e}$ and

$$\begin{split} \Sigma_{\alpha}^{j} &= \log\left(\frac{1}{1 - U_{0}^{j}}\right)^{-\alpha/2} \\ &+ \sum_{k=1}^{+\infty} \left(-kW_{0}\left[-\frac{1}{k}\exp\left(\frac{\log\left[(1 - U_{k}^{j})k!\right]}{k}\right)\right]\right)^{-\alpha/2} \end{split}$$

Slotted-ALOHA *with* Channel Reservation and *Without* Interferences

MAC Protocol Description: Slotted-ALOHA with Channel Reservation (SACR)

Assuming $N \sim Poiss(\mu = \frac{N_n}{N_{ts}N_{fc}})$, the reservation probability is

 $Rp = \mathbb{P}\{N = 0\} = e^{-\mu}$

SACR Strategy Illustration

BTS
Communicating node
Inactive nodes

Communicating Node States Modeling: Markov Chain

Communicating Node States Modeling: Markov Chain

Given its transition matrix Γ , the distribution over states is given by a stochastic row vector π s.t. $\pi^{(k+1)} = \pi^{(k)}\Gamma$ and so $\pi^{(k)} = \pi^{(0)}\Gamma^k$, thus $\pi^{\infty} = \pi^{(0)} \lim_{k \to \infty} \Gamma^k$. In particular the success transmission likelihood is given by

$$Tx_i = \left[\lim_{k \to \infty} \Gamma^k\right]_{(1,4i)}$$

Communicating Node States Modeling: Markov Chain

Number of nodes

Figure 1: Curves of Tx_i 's.

Slotted-ALOHA *with* Channel Reservation and Interferences

When interfering nodes in the out range of the BTS

where R denotes the range of the BTS.

When interfering nodes in the out range of the BTS

Figure 2: Comparison of the transmission success likelihood after one trial with no interfering nodes (in blue) and with interference (in black).

Experimental Analysis and Main Result

Experiment using Fit-IoT-Lab platform

IoT-LAB: a very large scale open testbed

IoT-LAB provides a very large scale infrastructure facility suitable for testing small wireless sensor devices and heterogeneous communicating objects.

Experiment details

Density of nodes	$\lambda = 1.7 \cdot 10^{-6}$
Attenuation coeff.	$\alpha = 2.2$
Noise power	$N_0 = -100 dBm$
Trans. power	$P_e = 25 dBm$
SINR thresh.	au = -10 dB
Dist. node	r = 50m
Numb. nodes	$N_n = 40$
Numb. channels	$N_c = 5$
Numb. time-slots	$N_{ts} = 4$

Theory vs Experiments

Figure 3: Comparison between the theoretical transmission likelihood and its practical estimation for 20 channels. Best view in color.

Main result: How many channels do we need to a achieve high performance distributed wireless sensor network?

Figure 4: Transmission success likelihood in terms of number of nodes in the network and number of channels assuming the presence of interfering nodes in the out range of the BTS.

Thank you for your attention!