Lightweight Neural Networks from PCA & LDA Based Distilled Dense Neural Networks

ICIP 2020

MEA. Seddik^{1,2,*}, H. Essafi¹, A. Benzine^{1,3}, M. Tamaazousti¹

¹CEA List, France ²CentraleSupélec, L2S, France ³Sorbonne University, CNRS, France

*http://melaseddik.github.io/

August 21, 2020

Abstract

Context:

Compression of dense neural networks with the teacher-student approach.

Motivation:

Build lightweight neural networks that can fit into edge and IoT devices with limited resources (memory and computation).

Proposed methods:

- We proposed two methods which rely on dimension reduction techniques (PCA and LDA).
- The dimension reduction is applied at each layer of the teacher net and then mapped to the layers of the student net using a multi-task loss function.

Setting

Given a Teacher Network (TN) trained on a dataset \mathcal{D} with loss \mathcal{L}_{TN}

$$(\mathsf{TN}): \left\{ \begin{array}{l} \boldsymbol{h}^{(0)} = \boldsymbol{x} \in \mathbb{R}^{p_0} \\ \boldsymbol{h}^{(\ell)} = f_\ell \left(\boldsymbol{W}^{(\ell)} \boldsymbol{h}^{(\ell-1)} + \boldsymbol{b}^{(\ell)} \right) \in \mathbb{R}^{p_\ell} \quad \forall \ell \in [L] \end{array} \right.$$

Construct a Student Network (SN) to train on $\mathcal D$

$$(\mathsf{SN}): \begin{cases} \tilde{h}^{(0)} = \mathbf{x} \in \mathbb{R}^{p_0} \\ \tilde{h}^{(\ell)} = f_{\ell} \left(\tilde{W}^{(\ell)} \tilde{h}^{(\ell-1)} + \tilde{b}^{(\ell)} \right) \in \mathbb{R}^{k_{\ell}} \qquad \forall \ell \in [L] \end{cases}$$

Such that

 $k_{\ell} \ll p_{\ell}$ & Performance (SN) \gtrsim Performance (TN)

Proposed Methods (Net-PCAD & Net-LDAD)

Given (TN), a data matrix X and (TN) loss function \mathcal{L}_{TN}

For each layer ℓ :

- 1. Extract the representations H_{ℓ} of X from (TN)
- 2. Compute a projection matrix $\boldsymbol{U}_{\ell} \in \mathbb{R}^{p_{\ell} \times k_{\ell}}$ through PCA or LDA on \boldsymbol{H}_{ℓ}

Train (SN) as a multi-task¹ problem with

$$\mathcal{L}_{SN} = \underbrace{e^{-\sigma}\mathcal{L}_{TN} + \sigma}_{\text{Learning Task}} + \underbrace{\sum_{\ell=1}^{L-1} e^{-\sigma_{\ell}}\mathcal{L}_{\text{mse}}\left(\tilde{\boldsymbol{h}}^{(\ell)}, \boldsymbol{U}_{\ell}^{\mathsf{T}}\boldsymbol{h}^{(\ell)}\right) + \sigma_{\ell}}_{(SN) \text{ Hidden Layers Task}}$$

where σ and $\{\sigma_\ell\}_{\ell=1}^{L-1}$ are learnable parameters.

 $^{^1\}text{U}\text{sing}$ the Homoscedastic loss function: A. Kendall et al. "Multitask learning using uncertainty to weigh losses for scene geometry and semantics" in Proceedings of IEEE CVPR, 2018.

Experimental Setting & Results

Layer	(TN)	(SN)	
Dense 1	$p_0 \times 1024$	$p_0 \times k$	
Dense 2	1024×512	$k \times k$	
Dense 3	512 imes 256	k imes k	
Dense 4	256 imes10	k imes 10	

Table: Networks architectures.

		(SN)		
Datasets	(TN)	<i>k</i> = 50	100	200
MNIST	2.23s	0.38s	0.45s	0.65s
	98%	97%	97.5%	97.8%
FASHION	2.23s	0.38s	0.45s	0.65s
	88%	87.5%	88.5%	88.5%
CIFAR10	4.63s	0.75s	0.92s	1.35s
	45%	50%	50.1%	50.3%

Table: Networks performances.

 $k_{\ell} \ll p_{\ell}$ & Performance (SN) \gtrsim Performance (TN)