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Abstract

Context:
I Study of a one-hidden-layer network with α-Dropout.

Motivation:
I Classical Dropout1 corresponds to zero-imputation.
I Zero-imputation alter neural networks performances2.

Results:
I Asymptotic generalization performances on a binary classification problem.
I An aftermath analysis exhibits α 6= 0 which improves generalization.

1Srivastava et al., Dropout: a simple way to prevent neural networks from overfitting. JMLR 2014.
2Yi et al., Why not to use zero imputation? correcting sparsity bias in training neural networks. ICLR 2019.
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Model and Problem Statement

Let d1, . . . , dn ∈ Rq in two classes C1 and C2, and σ : Rq → Rp s.t. for d i ∈ Ca

E[σ(d i )] = (−1)aµ E[σ(d i )σ(d i )ᵀ] = Ip + µµᵀ

Input
Hidden -Dropout + BN

Output

After the α-Dropout layer and BN, the features matrix Xα,ε = [x1, . . . , xn] ∈Mp,n is

Xα,ε =
(Bε � (Z + µyᵀ)) Pn + αBεPn√

ε+ α2ε(1− ε)

with [Bε]ij ∼ Ber(ε), Zij ∼ N (0, 1) and Pn = In − 1
n1n1ᵀ

n .
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Learning with α-Dropout
We consider the Ridge-classifier with `2-loss

E(w) =
1
n
‖y − Xᵀ

α,εw‖2 + γ‖w‖2

The solution of which is explicitly given by, for z ∈ C \ R−

w =
1
n

Q(γ)Xα,εy , Q(z) ≡
( 1
n

Xα,εXᵀ
α,ε + zIp

)−1
I The corresponding (hard) decision function is

g(x) ≡ xᵀw =
1
n

xᵀQ(γ)Xα,εy
C1
≶
C2

0

Assumptions (Growth rate)
As n→∞,

1. q
n → r ∈ (0,∞) and p

n → c ∈ (0,∞);

2. For a ∈ {1, 2}, na
n → ca ∈ (0, 1);

3. ‖µ‖ = O(1).
Input

Hidden -Dropout + BN

Output
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Main Results

Deterministic equivalent of Q(z)
Under the previous Assumptions,

Q(z)↔ Q̄(z) ≡ Dz −
ε

1+α2(1−ε)DzµµᵀDz

1 + cq(z) + ε
1+α2(1−ε) µᵀDzµ

,

where Dz ≡ q(z)diag
{

1+cq(z)
1+cq(z)+ (1−ε)q(z)

1+α2(1−ε)
µ2i

}p

i=1

with q(z) ≡ c−z−1+
√

(c−z−1)2+4 z c
2 z c .

Gaussian Approximation of g(x)
Under the previous Assumptions, for x ∈ Ca with a ∈ {1, 2},

ν−
1
2 (g(x)−ma) D−→ N (0, 1)

where

ma ≡ (−1)a
√

ε

1 + α2(1 − ε)
µᵀQ̄(γ)µ
1 + δ(γ)

ν ≡
1

(1 + δ(γ))2

(
η(C1) +

ε

1 + α2(1 − ε)
×
[

µ
ᵀ
(

∆(C1) − Q̄(γ)
)

µ −
2 η(C1)µᵀQ̄(γ)µ

1 + δ(γ)

])
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Take Away Messages
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Highlights:
I Existence of α 6= 0 which minimizes the test error.
I In our setting, such α satisfies 1

ma
∂ma
∂α

= 1√
ν

∂
√
ν

∂α
.

Perspectives:
I Extend the analysis to a k-class model with α`’s for each class.
I Validation of the α-Dropout approach with real data.
I Extend to multi-layers networks.
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