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The Random GCN
Our work focuses on the Graph Convolutional Network (GCN, Kipf and
Welling, 2017)

σ(ÃXΘ) with Θ trainable.
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σ(ÃXW) with Wij ∼ N (0, 1).

0 1000 2000 3000 4000 5000
Hidden dimension

30

40

50

60

70

80

N
od

e 
C

la
ss

ifi
ca

tio
n 

Ac
cu

ra
cy

 (%
)

(a) Cora

0 1000 2000 3000 4000 5000
Hidden dimension

20

30

40

50

60

70
(b) CiteSeer

0 1000 2000 3000 4000 5000
Hidden dimension

40

45

50

55

60

65

70

75

80
(c) PubMed

MLP Vanilla GCN Random GCN

In high dimensions: GCN and RandomGCN exhibit equivalent performance.
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σ(ÃXΘ) with Θ trainable.

To enable a random matrix theory analysis, we propose the RandomGCN
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σ(ÃXΘ) with Θ trainable.

To enable a random matrix theory analysis, we propose the RandomGCN

σ(ÃXW) with Wij ∼ N (0, 1).

We gain insight on the behaviour of this model by studying its Gram matrix,

G =
1
dσ(ÃXW)σ(W⊺X⊺Ã⊺).

We characterise the eigenvector of G corresponding to its largest eigenvalue
(the informative eigenvector).
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Theoretical Result

Assumptions:
• Node features follow a Gaussian Mixture Model.
• Graph Structure follows a Stochastic Block Model (SBM).
• Growth Rate Assumptions on the number of nodes, feature dimension,

dimension of the random matrix W and edge probabilities.
• Regularity Assumptions on the activation function σ(·).

(Informal) Theorem
The extent to which the labels vector, that we are trying to predict, correlates
with the informative eigenvector of the Gram matrix of our RandomGCN
depends on the presence of cluster structure in the SBM.
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Intuition & Proposed Solution

Our Observation
If the graph is sufficiently perturbed then the GCN fails to benefit from the
node features no matter how informative they are.

Intuition: Node features are aggregated over neighbourhoods. If these
neighbourhoods are random, then we smooth random subsets of node features.

This can be addressed by using the node feature information to directly inform
the structure of the GCNs message passing scheme

ϵÂ + (1 − ϵ)K̃.



3/5

Intuition & Proposed Solution

Our Observation
If the graph is sufficiently perturbed then the GCN fails to benefit from the
node features no matter how informative they are.

Intuition: Node features are aggregated over neighbourhoods. If these
neighbourhoods are random, then we smooth random subsets of node features.

This can be addressed by using the node feature information to directly inform
the structure of the GCNs message passing scheme

ϵÂ + (1 − ϵ)K̃.



3/5

Intuition & Proposed Solution

Our Observation
If the graph is sufficiently perturbed then the GCN fails to benefit from the
node features no matter how informative they are.

Intuition: Node features are aggregated over neighbourhoods. If these
neighbourhoods are random, then we smooth random subsets of node features.

This can be addressed by using the node feature information to directly inform
the structure of the GCNs message passing scheme
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Experiments: Stochastic Blockmodels
▶ Node Classification
▶ Two structural perturbation schemes: edge deletion of ratio α, edge

insertion of ratio β.

▶ Kernel choice: Kij = x⊺
i xj

▶ Scalability issue with dense kernel: sparsification K ◦ Â
▶ Single-layer model: (GCN + MLP)

• 2-community SBMs with no community structure, weakly homophilic com-
munities and weakly heterophilic communities.

SBM(p = 0.25, q = 0.25) SBM(p = 0.275, q = 0.25) SBM(p = 0.225, q = 0.25)
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 50.53 ± 0.49 66.36 ± 0.81 64.42 ± 0.43 62.26 ± 1.04 63.20 ± 0.94 61.03 ± 1.08
Deletion (0.2, 0.0) 51.03 ± 0.56 65.44 ± 1.07 58.63 ± 0.68 71.57 ± 1.42 60.89 ± 0.83 54.91 ± 1.00

(0.5, 0.0) 49.29 ± 0.59 64.14 ± 1.01 60.76 ± 1.29 68.80 ± 2.04 58.41 ± 1.11 59.51 ± 2.47
Insertion (0.0, 0.5) 50.57 ± 0.75 68.57 ± 1.25 60.49 ± 0.40 68.20 ± 1.38 58.82 ± 1.16 63.54 ± 0.97

(0.0, 1.0) 49.19 ± 0.47 59.31 ± 0.58 53.67 ± 1.11 66.57 ± 1.73 54.87 ± 0.53 60.84 ± 0.75
Delet.+Insert. (0.5, 0.5) 49.26 ± 0.59 68.84 ± 0.86 50.50 ± 0.37 63.36 ± 1.67 50.94 ± 0.86 63.02 ± 0.91

(0.5, 1.0) 49.84 ± 0.69 65.49 ± 1.22 48.34 ± 0.22 60.16 ± 1.21 49.23 ± 0.45 59.64 ± 1.33

• The addition of the node feature kernel improves the GCN’s robustness
against edge-deletion and edge insertion noise.
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Experiments: Real-World Datasets
▶ Node Classification
▶ Two structural perturbation schemes: edge deletion of ratio α, edge

insertion of ratio β.

▶ Kernel choice: Kij = x⊺
i xj

▶ Scalability issue with dense kernel: sparsification K ◦ Â
▶ One-layers model: (GCN + MLP)

• Experiments on citation, co-purchase and co-authorship graphs.

CoraFull Photo CS
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 57.21 ± 0.84 56.88 ± 0.48 90.94 ± 0.49 90.09 ± 0.65 92.89 ± 0.41 92.63 ± 0.31
Deletion (0.2, 0.0) 57.25 ± 0.67 55.56 ± 0.69 91.87 ± 0.40 92.19 ± 0.45 90.58 ± 0.48 90.89 ± 0.48

(0.5, 0.0) 53.90 ± 0.70 54.62 ± 0.87 91.10 ± 0.40 87.97 ± 0.54 89.75 ± 0.60 91.27 ± 0.67
Insertion (0.0, 0.5) 48.11 ± 0.89 51.79 ± 0.65 82.79 ± 1.43 84.18 ± 1.27 87.16 ± 0.65 90.81 ± 0.70

(0.0, 1.0) 41.76 ± 1.03 51.91 ± 1.00 72.70 ± 6.40 79.58 ± 1.80 80.34 ± 0.80 90.61 ± 0.37
Delet.+Insert. (0.5, 0.5) 34.70 ± 0.47 46.50 ± 0.61 69.70 ± 3.70 74.65 ± 2.36 73.75 ± 0.98 87.28 ± 0.72

(0.5, 1.0) 27.50 ± 1.04 43.04 ± 0.77 61.13 ± 2.49 63.73 ± 5.04 66.26 ± 0.95 87.51 ± 0.58
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• On real-world datasets insertion noise seems to have a greater impact,
which can largely be compensated by the node feature kernel.
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• Baselines: Jumping Knowledge (Xu et al., 2018), GCNII (Chen et al., 2020)
• 4-layer GCN model
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• For better performance our kernel can be combined with JK.
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We also observed similar behaviour for other GNNs (GIN (Xu et al., 2019),
GraphSage (Hamilton et al., 2017) and GAT (Veličković et al., 2018)).



Thank you for your attention!

@melaseddik @cmwu8 @JLutzeyer @mvazirg
https://github.com/ChangminWu/RobustGCN

Please visit us at our virtual poster to discuss :)
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