On the Accuracy of Hotelling-Type Asymmetric Tensor Deflation: A Random Tensor Analysis

Mohamed El Amine Seddik TII Abu Dhabi Alexis Decurninge Huawei Paris

Maxime Guillaud INRIA / CITI Lab Lyon J. Henrique de M. Goulart Toulouse INP / IRIT

CAMSAP, Los Sueños, December 11th 2023

Introduction: Asymmetric Rank-2 Spiked Tensor Model

Consider the rank-2 spiked tensor model:

$$\mathbf{T} = \underbrace{\beta_1 \mathbf{a}_1 \otimes \mathbf{b}_1 \otimes \mathbf{c}_1}_{\text{signal 1}} + \underbrace{\beta_2 \mathbf{a}_2 \otimes \mathbf{b}_2 \otimes \mathbf{c}_2}_{\text{signal 2}} + \frac{1}{\sqrt{n_1 + n_2 + n_3}} \underbrace{\mathbf{X}}_{\text{noise}} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$$

where $\beta_t \ge 0$, $\|\mathbf{a}_t\| = \|\mathbf{b}_t\| = \|\mathbf{c}_t\| = 1$ for $t = 1, 2, X_{ijk} \sim \mathcal{N}(0, 1)$ i.i.d.

• Assume correlated signals:

$$\alpha_a := \langle \mathbf{a}_1, \mathbf{a}_2 \rangle \neq 0, \quad \alpha_b := \langle \mathbf{b}_1, \mathbf{b}_2 \rangle \neq 0, \quad \alpha_c := \langle \mathbf{c}_1, \mathbf{c}_2 \rangle \neq 0$$

• We focus on deflation algorithms that compute successive rank-1 approximations

Introduction: Hotelling-type Tensor Deflation

Successive best rank-1 approximations (here for rank r = 2). • Input: Observed tensor T, Output: Rank-1 tensors $u_t \otimes v_t \otimes w_t$, t = 1, 2, ...• Step t = 1• Best rank-1 tensor approximation of $\mathbf{T}_1 = \mathbf{T}$: $(\hat{\lambda}_1, \hat{u}_1, \hat{v}_1, \hat{w}_1) = \operatorname*{arg \min}_{\lambda_1 > 0, \|u_1\| = \|v_1\| = \|w_1\| = 1} \|\mathbf{T}_1 - \lambda_1 u_1 \otimes v_1 \otimes w_1\|_F^2$ • Step t = 2• Best rank-1 tensor approximation of $\mathbf{T}_2 = \mathbf{T} - \hat{\lambda}_1 \hat{u}_1 \otimes \hat{v}_1 \otimes \hat{w}_1$: $(\hat{\lambda}_2, \hat{u}_2, \hat{v}_2, \hat{w}_2) = \operatorname*{arg \min}_{\lambda_2 > 0, \|u_2\| = \|v_2\| = \|w_2\| = 1} \|\mathbf{T}_2 - \lambda_2 u_2 \otimes v_2 \otimes w_2\|_F^2$

- Deflation yields wrong results for non-orthogonal tensors, even in the absence of noise (the Eckart-Young theorem does not apply here)
- This work is about quantifying the error in terms of alignment between true and estimated singular vectors: $\langle \mathbf{a}_t, u_t \rangle, \langle \mathbf{b}_t, v_t \rangle, \langle \mathbf{c}_t, w_t \rangle$
- \bullet As a side product, we obtain a powerful estimator for the β 's

Asymmetric Rank-1 Spiked Tensor Model

Let us take a step backward and consider a spiked rank-1 model $\mathbf{T} = \underbrace{\beta \mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c}}_{\text{signal}} + \frac{1}{\sqrt{n_1 + n_2 + n_3}} \underbrace{\mathbf{X}}_{\text{noise}} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ where $\beta \ge 0$, $\|\mathbf{a}\| = \|\mathbf{b}\| = \|\mathbf{c}\| = 1$, $X_{ijk} \sim \mathcal{N}(0, 1)$ i.i.d.

Random Matrix Approach (Seddik et al., 2023)

• A traditional estimator of the rank-1 signal is the Maximum Likelihood Estimator (MLE)

$$(\hat{\lambda}, \hat{oldsymbol{u}}, \hat{oldsymbol{v}}, \hat{oldsymbol{v}}) = rgmin_{\lambda > 0, \|oldsymbol{u}\| = \|oldsymbol{v}\| = \|oldsymbol{w}\| = 1} \|oldsymbol{T} - \lambda oldsymbol{u} \otimes oldsymbol{v} \otimes oldsymbol{w}\|_F^2$$

The critical points of the likelihood are tensor singular vectors and satisfy (Lim, 2005):

$$\underbrace{\begin{pmatrix} \mathbf{0}_{\mathbf{n}_1 \times \mathbf{n}_1} & \mathsf{T}(\cdot, \cdot, \boldsymbol{w}) & \mathsf{T}(\cdot, \boldsymbol{v}, \cdot) \\ \mathsf{T}(\cdot, \cdot, \boldsymbol{w})^T & \mathbf{0}_{\mathbf{n}_2 \times \mathbf{n}_2} & \mathsf{T}(\boldsymbol{u}, \cdot, \cdot) \\ \mathsf{T}(\cdot, \boldsymbol{v}, \cdot)^T & \mathsf{T}(\boldsymbol{u}, \cdot, \cdot)^T & \mathbf{0}_{\mathbf{n}_3 \times \mathbf{n}_3} \end{pmatrix}}_{\Phi_3(\mathsf{T}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ \boldsymbol{w} \end{pmatrix} = 2\lambda \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ \boldsymbol{w} \end{pmatrix}$$
where we have the contractions $(\mathsf{T}(\cdot, \cdot, \boldsymbol{w}))_{ij} = \sum_{k=1}^{n_3} w_k T_{ijk}.$

- We establish the asymptotic (large dimensional) properties of these critical points by studying the spectrum of $\Phi_3(\mathsf{T}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ using Random Matrix Theory
- Spectrum of $\Phi_3(\mathbf{T}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ for random $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ (left) and for tensor singular vectors (right):

Asymptotic Spectral Norm and Alignments

Assumption 1. As $n_i \to \infty$ with $\frac{n_i}{\sum_j n_j} \to c_i \in (0, 1)$, there exists a sequence of critical points $(\hat{\lambda}^{(n)}, \hat{\boldsymbol{u}}^{(n)}, \hat{\boldsymbol{v}}^{(n)}, \hat{\boldsymbol{w}}^{(n)})$ s.t. $\begin{cases} \hat{\lambda}^{(n)} \xrightarrow{\text{a.s.}} \lambda > \lambda_{\min} \\ |\langle \mathbf{a}^{(n)}, \hat{\boldsymbol{u}}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \rho_a > 0 \\ |\langle \mathbf{b}^{(n)}, \hat{\boldsymbol{v}}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \rho_b > 0 \\ |\langle \mathbf{c}^{(n)}, \hat{\boldsymbol{w}}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \rho_c > 0 \end{cases}$

Theorem 1 (SGC'21). Under Assumption 1, there exists $\beta_s > 0$ such that for all $\beta > \beta_s$ the following fixed point equation holds

$$\rho_a = q_a(\lambda), \quad \rho_b = q_b(\lambda), \quad \rho_c = q_c(\lambda), \qquad \lambda = \beta \rho_a \rho_b \rho_c - g(\lambda)$$

where $g(\lambda) = g_a(\lambda) + g_b(\lambda) + g_c(\lambda)$ and $\begin{cases}
g_a^2(z) - (g(z) + z)g_a(z) - c_1 = 0 , & q_a(z) = \sqrt{1 - g_a^2(z)/c_1} \\
g_b^2(z) - (g(z) + z)g_b(z) - c_2 = 0 , & q_b(z) = \sqrt{1 - g_b^2(z)/c_2} \\
g_c^2(z) - (g(z) + z)g_c(z) - c_3 = 0 , & q_c(z) = \sqrt{1 - g_c^2(z)/c_3}
\end{cases}$ For both deflation steps:

 $\mathbf{T}_t \rightarrow$ analyse spectrum of $\mathbf{\Phi}_3(\mathbf{T}_t, \hat{\boldsymbol{u}}_t, \hat{\boldsymbol{v}}_t, \hat{\boldsymbol{w}}_t)$

Assumption 2. As $n_i \to \infty$ with $\sum_{j=n_j}^{n_i} \to c_i \in (0,1)$, there exists a sequence of critical points $(\hat{\lambda}_t^{(n)}, \hat{u}_t^{(n)}, \hat{v}_t^{(n)}, \hat{w}_t^{(n)})$ s.t. $\begin{cases} \hat{\lambda}_t^{(n)}, \hat{u}_t^{(n)}, \hat{w}_t^{(n)} \end{pmatrix} \text{s.t.} \\ |\langle \mathbf{a}_t^{(n)}, \hat{u}_{t'}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \rho_{tt',a} > 0, \quad |\langle \hat{u}_t^{(n)}, \hat{u}_{t'}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \eta_{tt',a} > 0 \\ |\langle \mathbf{b}_t^{(n)}, \hat{u}_{t'}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \rho_{tt',b} > 0, \quad |\langle \hat{u}_t^{(n)}, \hat{u}_{t'}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \eta_{tt',b} > 0 \\ |\langle \mathbf{c}_t^{(n)}, \hat{w}_{t'}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \rho_{tt',c} > 0, \quad |\langle \hat{w}_t^{(n)}, \hat{w}_{t'}^{(n)} \rangle| \xrightarrow{\text{a.s.}} \eta_{tt',c} > 0 \end{cases}$

$$\begin{array}{l} \mbox{Theorem 2. Under Assumption 2, with } n_1 = n_2 = n_3 \mbox{ and } \alpha_a = \alpha_b = \alpha_c = \alpha, \mbox{ then it holds} \\ \bullet \ \rho_{tt',a} = \rho_{tt',b} = \rho_{tt',c} = \rho_{tt'} \mbox{ for } 1 \leq t,t' \leq 2 \\ \bullet \ \eta_{12,a} = \eta_{12,b} = \eta_{12,c} = \eta \\ \mbox{ and} \\ \left\{ \begin{array}{c} f(\lambda_1) & -\beta_1 \rho_{11}^3 & -\beta_2 \rho_{21}^3 = 0 \\ h(\lambda_1) \rho_{11} & -\beta_1 \rho_{11}^2 & -\beta_2 \alpha \rho_{21}^2 = 0 \\ h(\lambda_1) \rho_{21} & -\beta_1 \alpha \rho_{11}^2 & -\beta_2 \rho_{22}^2 = 0 \\ h(\lambda_2) \rho_{12} + \lambda_1 \rho_{11} \eta^2 & -\beta_1 \rho_{12}^2 & -\beta_2 \alpha \rho_{22}^2 = 0 \\ h(\lambda_2) \rho_{22} + \lambda_1 \rho_{21} \eta^2 & -\beta_1 \alpha \rho_{12}^2 & -\beta_2 \rho_{22}^2 = 0 \\ h(\lambda_2) \eta + q(\lambda_1) \eta^2 & -\beta_1 \rho_{11} \rho_{12}^2 & -\beta_2 \rho_{21} \rho_{22}^2 = 0 \\ h(\lambda_2) \eta + q(\lambda_1) \eta^2 & -\beta_1 \rho_{11} \rho_{12}^2 & -\beta_2 \rho_{21} \rho_{22}^2 = 0 \\ \end{array} \right. \ \ \mbox{ step 2 of deflation} \\ \mbox{ where } h(z) = \frac{-1}{g(z)} \mbox{ and } q(z) = z + \frac{g(z)}{3} \mbox{ and } f(z) = z + g(z). \end{array}$$

Illustration of Signal Recovery with Deflation: Uncorrelated case

- Dimensions $n_1 = n_2 = n_3 = 50$
- Uncorrelated case: $\alpha = \mathbf{0}$ with a fixed $\beta_2 = 10$

Illustration of Signal Recovery with Deflation: Correlated case

- Dimensions $n_1 = n_2 = n_3 = 50$
- Correlated case: $\alpha = 0.4$ with a fixed $\beta_2 = 10$

- If $\beta_1 \ll \beta_2$: signal 2 is recovered at step 1, signal 1 is recovered at step 2
- If $\beta_1 \approx \beta_2$: Interference regime, the output of the deflation is correlated with both signals
- If $\beta_1 \gg \beta_2$: signal 1 is recovered at step 1, signal 2 is recovered at step 2

Illustration of Signal Recovery with Deflation: Correlated case

- Dimensions $n_1 = n_2 = n_3 = 50$
- Correlated case: $\alpha = 0.7$ with a fixed $\beta_2 = 10$

• For $\beta_1 \gtrsim 4$, the set of fixed point equations admits two solutions ($\cdot^{(1)}$ and $\cdot^{(2)}$) corresponding to multiple critical points of the MLE

RTT-aided Power estimation

- Naive estimator:
 - Use the $\hat{\lambda}_i$ from the deflation as estimates for the true powers β_i (up to reordering)
- Better estimator using random tensor theory:
 - The system of equations from Theorem 1 links the true (β_1, β_2) and (improperly) estimated (λ_1, λ_2) power terms, in the aymptotic regime of large dimensions
 - $\hat{\beta}_1, \hat{\beta}_2$ are obtained by solving the asymptotic system of equations where we plug $\hat{\lambda}_t$ in place of λ_t

• Numerical comparison: $\hat{\lambda}_1$, $\hat{\lambda}_2$, $\hat{\beta}_1$, $\hat{\beta}_2$ vs. β_1 for fixed $\beta_2 = 10$

Take Away Messages

- Hotelling-type deflation fails to properly recover low-rank non-orthogonal tensor signals
- RMT was used to characterize the alignments between true signals and deflation outputs in the asymptotic dimension regime
- This enables a more accurate signal power estimation algorithm

Ongoing work:

- Study the existence and uniqueness of the solutions of the asymptotic fixed point equations.
- Study RTT-aided signals estimators by "unbiasing" deflation outputs

Thank you for your attention!

Backup slides

Stieltjes Transform. The Stieltjes transform of a probability measure ν is $g_{\nu}(z) = \int \frac{d\nu(\lambda)}{\lambda-z}$, $z \in \mathbb{C} \setminus S(\nu)$.

Definition 1. Let ν by the probability measure with Stieltjes transform $g(z) = g_a(z)+g_b(z)+g_c(z)$ verifying $\Im[g(z)] > 0$ for $\Im[z] > 0$, where $g_a(z)$ satisfies $g_a^2(z) - (g(z) + z)g_a(z) - c_1 = 0$, for $z \notin S(\nu)$.

 $\begin{array}{l} \text{Assumption 1. As } n_i \to \infty \text{ with } \frac{n_i}{\sum_j n_j} \to c_i \in (0,1) \text{, there exists a sequence of critical points} \\ (\hat{\lambda}, \hat{\boldsymbol{u}}^{(n)}, \hat{\boldsymbol{v}}^{(n)}, \hat{\boldsymbol{w}}^{(n)}) \text{ s.t. } \hat{\lambda} \xrightarrow{\text{a.s.}} \lambda, \ |\langle \mathbf{a}_i, \hat{\boldsymbol{u}} \rangle| \xrightarrow{\text{a.s.}} \rho_a \text{ with } \lambda \notin \mathcal{S}(\nu) \text{ and } \rho_a > 0. \end{array}$

Theorem 1 (SGC'21). Under Assumption 1, the empirical spectral measure of $\Phi_3(\mathbf{T}, \hat{u}, v, \hat{w})$ converges weakly to ν defined in Definition 1, i.e.

$$\frac{1}{N} \operatorname{tr} \left(\Phi_d(\mathbf{T}, \hat{u}, \hat{v}, \hat{w}) - z \mathbf{I}_{N \times N} \right)^{-1} \xrightarrow{\text{a.s.}} g(z)$$

Random Matrix Approach (Goulart et al., 2022)

The optimization problem of maximum likelihood estimator (MLE) for d = 3:

$$\min_{\lambda>0, \|\boldsymbol{u}\|=1} \left\| \boldsymbol{\mathsf{Y}} - \lambda \boldsymbol{u}^{\otimes 3} \right\|_{F}^{2} \quad \Leftrightarrow \quad \max_{\|\boldsymbol{u}\|=1} \left\langle \boldsymbol{\mathsf{Y}}, \boldsymbol{u} \otimes \boldsymbol{u} \otimes \boldsymbol{u} \right\rangle$$

The critical points satisfy (Lim, 2005):

$$\mathbf{Y}(\boldsymbol{u}, \boldsymbol{u}) = \lambda \boldsymbol{u} \quad \Leftrightarrow \quad \mathbf{Y}(\boldsymbol{u})\boldsymbol{u} = \lambda \boldsymbol{u}, \quad \|\boldsymbol{u}\| = 1$$

where $(\mathbf{Y}(\boldsymbol{u},\boldsymbol{u}))_i = \sum_{jk} u_j u_k Y_{ijk}$ et $(\mathbf{Y}(\boldsymbol{u}))_{ij} = \sum_k u_k Y_{ijk}$. The MLE \hat{x} corresponds to the dominant eigenvector of $\mathbf{Y}(\hat{x})$: $\mathbf{Y}(\hat{x})\hat{x} = \|\mathbf{Y}\|\hat{x}$.

Hence, the approach from (Goulart et al., 2021) consists in studying:

$$\mathbf{Y}(oldsymbol{u}) = eta\langleoldsymbol{x},oldsymbol{u}
angle oldsymbol{x}oldsymbol{x}^ op + rac{1}{\sqrt{N}}\mathbf{W}(oldsymbol{u}) \in \mathbb{R}^{N imes N}$$

Decomposition Algorithms and Complexity

$$\min_{\lambda>0, \|\boldsymbol{u}_{i}\|=1} \|\boldsymbol{\mathsf{T}} - \lambda \boldsymbol{u}_{1} \otimes \cdots \otimes \boldsymbol{u}_{d}\|_{F}^{2} \Rightarrow \mathsf{NP-hard} \text{ (Hillar et al., 2013)}$$

- Tensor unfolding: $\mathcal{M}_i(\mathbf{T}) = \beta \boldsymbol{x}_i \boldsymbol{y}_i^\top + \frac{1}{\sqrt{n}} \mathcal{M}_i(\mathbf{X}) \in \mathbb{R}^{n_i \times \prod_{j \neq i} n_j}.$
- Using Corollary 3, we find $\beta_a = \left(\prod_i n_i\right)^{1/4} / \sqrt{\sum_i n_i}$.
- Coincides with $O\left(N^{\frac{d-2}{4}}\right)$ of (Ben Arous et al, 2021) for $n_i = N$.
- Same threshold for tensor power iteration initialized with tensor unfolding (Auddy et al., 2021).

