On the Accuracy of Hotelling-Type Asymmetric Tensor Deflation: A Random Tensor Analysis

Mohamed El Amine Seddik
TII Abu Dhabi

Maxime Guillaud
INRIA / CITI Lab Lyon

Alexis Decurninge
Huawei Paris
J. Henrique de M. Goulart Toulouse INP / IRIT

CAMSAP, Los Sueños, December 11th 2023

\rightarrow

Introduction: Asymmetric Rank-2 Spiked Tensor Model

Consider the rank-2 spiked tensor model:

$$
\mathbf{T}=\underbrace{\beta_{1} \mathbf{a}_{1} \otimes \mathbf{b}_{1} \otimes \mathbf{c}_{1}}_{\text {signal } 1}+\underbrace{\beta_{2} \mathbf{a}_{2} \otimes \mathbf{b}_{2} \otimes \mathbf{c}_{2}}_{\text {signal 2 }}+\frac{1}{\sqrt{n_{1}+n_{2}+n_{3}}} \underbrace{\mathbf{X}}_{\text {noise }} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}
$$

where $\beta_{t} \geq 0,\left\|\mathbf{a}_{t}\right\|=\left\|\mathbf{b}_{t}\right\|=\left\|\mathbf{c}_{t}\right\|=1$ for $t=1,2, X_{i j k} \sim \mathcal{N}(0,1)$ i.i.d.

- Assume correlated signals:

$$
\alpha_{a}:=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}\right\rangle \neq 0, \quad \alpha_{b}:=\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}\right\rangle \neq 0, \quad \alpha_{c}:=\left\langle\mathbf{c}_{1}, \mathbf{c}_{2}\right\rangle \neq 0
$$

- We focus on deflation algorithms that compute successive rank-1 approximations

Introduction: Hotelling-type Tensor Deflation

Successive best rank-1 approximations (here for rank $r=2$).

- Input: Observed tensor T, Output: Rank-1 tensors $\boldsymbol{u}_{t} \otimes \boldsymbol{v}_{t} \otimes \boldsymbol{w}_{t}, t=1,2, \ldots$
- Step $t=1$
- Best rank-1 tensor approximation of $\mathbf{T}_{1}=\mathbf{T}$:

$$
\left(\hat{\lambda}_{1}, \hat{\boldsymbol{u}}_{1}, \hat{\boldsymbol{v}}_{1}, \hat{\boldsymbol{w}}_{1}\right)=\underset{\lambda_{1}>0,\left\|\boldsymbol{u}_{1}\right\|=\left\|\boldsymbol{v}_{1}\right\|=\left\|\boldsymbol{w}_{1}\right\|=1}{\arg \min }\left\|\mathbf{T}_{1}-\lambda_{1} \boldsymbol{u}_{1} \otimes \boldsymbol{v}_{1} \otimes \boldsymbol{w}_{1}\right\|_{F}^{2}
$$

- Step $t=2$
- Best rank-1 tensor approximation of $\mathbf{T}_{2}=\mathbf{T}-\hat{\lambda}_{1} \hat{\boldsymbol{u}}_{1} \otimes \hat{\boldsymbol{v}}_{1} \otimes \hat{\boldsymbol{w}}_{1}$:

$$
\left(\hat{\lambda}_{2}, \hat{\boldsymbol{u}}_{2}, \hat{\boldsymbol{v}}_{2}, \hat{\boldsymbol{w}}_{2}\right)=\underset{\lambda_{2}>0,\left\|\boldsymbol{u}_{2}\right\|=\left\|\boldsymbol{v}_{2}\right\|=\left\|\boldsymbol{w}_{2}\right\|=1}{\arg \min }\left\|\mathbf{T}_{2}-\lambda_{2} \boldsymbol{u}_{2} \otimes \boldsymbol{v}_{2} \otimes \boldsymbol{w}_{2}\right\|_{F}^{2}
$$

- Deflation yields wrong results for non-orthogonal tensors, even in the absence of noise (the Eckart-Young theorem does not apply here)
- This work is about quantifying the error in terms of alignment between true and estimated singular vectors: $\left\langle\mathbf{a}_{t}, \boldsymbol{u}_{t}\right\rangle,\left\langle\mathbf{b}_{t}, \boldsymbol{v}_{t}\right\rangle,\left\langle\mathbf{c}_{t}, \boldsymbol{w}_{t}\right\rangle$
- As a side product, we obtain a powerful estimator for the β^{\prime} 's

Asymmetric Rank-1 Spiked Tensor Model

Let us take a step backward and consider a spiked rank-1 model

$$
\mathbf{T}=\underbrace{\beta \mathbf{a} \otimes \mathbf{b} \otimes c}_{\text {signal }}+\frac{1}{\sqrt{n_{1}+n_{2}+n_{3}}} \underbrace{\mathbf{X}}_{\text {noise }} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}
$$

where $\beta \geq 0,\|\mathbf{a}\|=\|\mathbf{b}\|=\|\mathbf{c}\|=1, X_{i j k} \sim \mathcal{N}(0,1)$ i.i.d.

Random Matrix Approach (Seddik et al., 2023)

- A traditional estimator of the rank-1 signal is the Maximum Likelihood Estimator (MLE)

$$
(\hat{\lambda}, \hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}, \hat{\boldsymbol{w}})=\underset{\lambda>0,\|\boldsymbol{u}\|=\|\boldsymbol{v}\|=\|\boldsymbol{w}\|=1}{\arg \min }\|\mathbf{T}-\lambda \boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w}\|_{F}^{2}
$$

The critical points of the likelihood are tensor singular vectors and satisfy (Lim, 2005):

$$
\underbrace{\left(\begin{array}{ccc}
\mathbf{0}_{\mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{1}}} & \mathbf{T}(\cdot, \cdot, \boldsymbol{w}) & \mathbf{T}(\cdot, \boldsymbol{v}, \cdot) \\
\mathbf{T}(\cdot, \cdot, \boldsymbol{w})^{T} & \mathbf{0}_{\mathbf{n}_{\mathbf{2}} \times \mathbf{n}_{\mathbf{2}}} & \mathbf{T}(\boldsymbol{u}, \cdot, \cdot) \\
\mathbf{T}(\cdot, \boldsymbol{v}, \cdot)^{T} & \mathbf{T}(\boldsymbol{u}, \cdot, \cdot)^{T} & \mathbf{0}_{\mathbf{n}_{\mathbf{3}} \times \mathbf{n}_{\mathbf{3}}}
\end{array}\right)}_{\mathbf{\Phi}_{3}(\mathbf{T}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})}\left(\begin{array}{c}
\boldsymbol{u} \\
\boldsymbol{v} \\
\boldsymbol{w}
\end{array}\right)=2 \lambda\left(\begin{array}{c}
\boldsymbol{u} \\
\boldsymbol{v} \\
\boldsymbol{w}
\end{array}\right)
$$

where we have the contractions $(\mathbf{T}(\cdot, \cdot, \boldsymbol{w}))_{i j}=\sum_{k=1}^{n_{3}} w_{k} T_{i j k}$.

- We establish the asymptotic (large dimensional) properties of these critical points by studying the spectrum of $\boldsymbol{\Phi}_{3}(\mathbf{T}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ using Random Matrix Theory
- Spectrum of $\Phi_{3}(\mathbf{T}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ for random $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ (left) and for tensor singular vectors (right):

Asymptotic Spectral Norm and Alignments

Assumption 1. As $n_{i} \rightarrow \infty$ with $\frac{n_{i}}{\sum_{j} n_{j}} \rightarrow c_{i} \in(0,1)$, there exists a sequence of critical points $\left(\hat{\lambda}^{(n)}, \hat{\boldsymbol{u}}^{(n)}, \hat{\boldsymbol{v}}^{(n)}, \hat{\boldsymbol{w}}^{(n)}\right)$ s.t.

$$
\left\{\begin{array}{l}
\hat{\lambda}^{(n)} \xrightarrow{\text { a.s. }} \lambda \gg \lambda_{\text {min }} \\
\left|\left\langle\mathbf{a}^{(n)}, \hat{\boldsymbol{u}}^{(n)}\right\rangle\right| \xrightarrow[\text { a.s. }]{\text { a.s }} \rho_{a}>0 \\
\left|\left\langle\mathbf{b}^{(n)}, \hat{\boldsymbol{v}}^{(n)}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{b}>0 \\
\left|\left\langle\mathbf{c}^{(n)}, \hat{\boldsymbol{w}}^{(n)}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{c}>0
\end{array}\right.
$$

Theorem 1 (SGC'21). Under Assumption 1, there exists $\beta_{s}>0$ such that for all $\beta>\beta_{s}$ the following fixed point equation holds

$$
\rho_{a}=q_{a}(\lambda), \quad \rho_{b}=q_{b}(\lambda), \quad \rho_{c}=q_{c}(\lambda), \quad \lambda=\beta \rho_{a} \rho_{b} \rho_{c}-g(\lambda)
$$

where $g(\lambda)=g_{a}(\lambda)+g_{b}(\lambda)+g_{c}(\lambda)$ and

$$
\left\{\begin{array}{lll}
g_{a}^{2}(z)-(g(z)+z) g_{a}(z)-c_{1}=0 & , & q_{a}(z)=\sqrt{1-g_{a}^{2}(z) / c_{1}} \\
g_{b}^{2}(z)-(g(z)+z) g_{b}(z)-c_{2}=0 & , & q_{b}(z)=\sqrt{1-g_{b}^{2}(z) / c_{2}} \\
g_{c}^{2}(z)-(g(z)+z) g_{c}(z)-c_{3}=0 & , & q_{c}(z)=\sqrt{1-g_{c}^{2}(z) / c_{3}}
\end{array}\right.
$$

Back to Hotelling Deflation: Spectral Measure

For both deflation steps:

$$
\mathbf{T}_{t} \quad \rightarrow \quad \text { analyse spectrum of } \boldsymbol{\Phi}_{3}\left(\mathbf{T}_{t}, \hat{\boldsymbol{u}}_{t}, \hat{\boldsymbol{v}}_{t}, \hat{\boldsymbol{w}}_{t}\right)
$$

Assumption 2. As $n_{i} \rightarrow \infty$ with $\frac{n_{i}}{\sum_{j} n_{j}} \rightarrow c_{i} \in(0,1)$, there exists a sequence of critical points $\left(\hat{\lambda}_{t}^{(n)}, \hat{\boldsymbol{u}}_{t}^{(n)}, \hat{\boldsymbol{v}}_{t}^{(n)}, \hat{\boldsymbol{w}}_{t}^{(n)}\right)$ s.t.

$$
\begin{cases}\hat{\lambda}_{t}^{(n)} \xrightarrow{\text { a.s. }} \lambda_{t}>\lambda_{\min , t} \\ \left|\left\langle\mathbf{a}_{t}^{(n)}, \hat{\boldsymbol{u}}_{t^{\prime}}^{(n)}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{t t^{\prime}, a}>0, & \left|\left\langle\hat{\boldsymbol{u}}_{t}^{(n)}, \hat{\boldsymbol{u}}_{t^{\prime}}^{(n)}\right\rangle\right| \xrightarrow{\text { a.s. }} \eta_{t t^{\prime}, a}>0 \\ \left|\left\langle\mathbf{b}_{t}^{(n)}, \hat{\boldsymbol{v}}_{t^{\prime}}^{(n)}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{t t^{\prime}, b}>0, & \left|\left\langle\hat{\boldsymbol{v}}_{t}^{(n)}, \hat{\boldsymbol{v}}_{t^{\prime}}^{(n)}\right\rangle\right| \xrightarrow{\text { a.s. }} \eta_{t t^{\prime}, b}>0 \\ \left|\left\langle\mathbf{c}_{t}^{(n)}, \hat{\boldsymbol{w}}_{t^{\prime}}^{(n)}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{t t^{\prime}, c}>0, & \left|\left\langle\hat{\boldsymbol{w}}_{t}^{(n)}, \hat{\boldsymbol{w}}_{t^{\prime}}^{(n)}\right\rangle\right| \xrightarrow{\text { a.s. }} \eta_{t t^{\prime}, c}>0\end{cases}
$$

Hotelling Deflation: Asymptotic Spectral Norm and Alignments

Theorem 2. Under Assumption 2, with $n_{1}=n_{2}=n_{3}$ and $\alpha_{a}=\alpha_{b}=\alpha_{c}=\alpha$, then it holds

- $\rho_{t t^{\prime}, a}=\rho_{t t^{\prime}, b}=\rho_{t t^{\prime}, c}=\rho_{t t^{\prime}}$ for $1 \leq t, t^{\prime} \leq 2$
- $\eta_{12, a}=\eta_{12, b}=\eta_{12, c}=\eta$
and

$$
\begin{aligned}
& \text { Step } 1 \text { of deflation } \\
& \text { Step } 2 \text { of deflation }
\end{aligned}
$$

where $h(z)=\frac{-1}{g(z)}$ and $q(z)=z+\frac{g(z)}{3}$ and $f(z)=z+g(z)$.

Illustration of Signal Recovery with Deflation: Uncorrelated case

- Dimensions $n_{1}=n_{2}=n_{3}=50$
- Uncorrelated case: $\boldsymbol{\alpha}=\mathbf{0}$ with a fixed $\beta_{2}=10$

Deflation step 1

Deflation step 2

- If $\beta_{1}<\beta_{2}$: signal 2 is recovered at step 1 , signal 1 is recovered at step 2
- If $\beta_{1}>\beta_{2}$: signal 1 is recovered at step 1 , signal 2 is recovered at step 2

Illustration of Signal Recovery with Deflation: Correlated case

- Dimensions $n_{1}=n_{2}=n_{3}=50$
- Correlated case: $\boldsymbol{\alpha}=\mathbf{0 . 4}$ with a fixed $\beta_{2}=10$

- If $\beta_{1} \ll \beta_{2}$: signal 2 is recovered at step 1 , signal 1 is recovered at step 2
- If $\beta_{1} \approx \beta_{2}$: Interference regime, the output of the deflation is correlated with both signals - If $\beta_{1} \gg \beta_{2}$: signal 1 is recovered at step 1 , signal 2 is recovered at step 2

Illustration of Signal Recovery with Deflation: Correlated case

- Dimensions $n_{1}=n_{2}=n_{3}=50$
- Correlated case: $\boldsymbol{\alpha}=\mathbf{0 . 7}$ with a fixed $\beta_{2}=10$

Deflation step 1

Deflation step 2

- For $\beta_{1} \gtrsim 4$, the set of fixed point equations admits two solutions (.(1) and .(2) corresponding to multiple critical points of the MLE

RTT-aided Power estimation

- Naive estimator:
- Use the $\hat{\lambda}_{i}$ from the deflation as estimates for the true powers β_{i} (up to reordering)
- Better estimator using random tensor theory:
- The system of equations from Theorem 1 links the true $\left(\beta_{1}, \beta_{2}\right)$ and (improperly) estimated $\left(\lambda_{1}, \lambda_{2}\right)$ power terms, in the aymptotic regime of large dimensions
- $\hat{\beta}_{1}, \hat{\beta}_{2}$ are obtained by solving the asymptotic system of equations where we plug $\hat{\lambda}_{t}$ in place of λ_{t}

- Numerical comparison: $\hat{\lambda}_{1}, \hat{\lambda}_{2}, \hat{\beta}_{1}, \hat{\beta}_{2}$ vs. β_{1} for fixed $\beta_{2}=10$

Take Away Messages

- Hotelling-type deflation fails to properly recover low-rank non-orthogonal tensor signals
- RMT was used to characterize the alignments between true signals and deflation outputs in the asymptotic dimension regime
- This enables a more accurate signal power estimation algorithm

Ongoing work:

- Study the existence and uniqueness of the solutions of the asymptotic fixed point equations.
- Study RTT-aided signals estimators by "unbiasing" deflation outputs

Thank you for your attention!

Backup slides

Spectral Measure of $\Phi_{3}\left(\mathbf{T}, \hat{\boldsymbol{u}}_{1}, \hat{\boldsymbol{u}}_{2}, \hat{\boldsymbol{u}}_{3}\right)$

Stieltjes Transform. The Stieltjes transform of a probability measure ν is $g_{\nu}(z)=\int \frac{d \nu(\lambda)}{\lambda-z}$, $z \in \mathbb{C} \backslash \mathcal{S}(\nu)$.

Definition 1. Let ν by the probability measure with Stieltjes transform $g(z)=g_{a}(z)+g_{b}(z)+g_{c}(z)$ verifying $\Im[g(z)]>0$ for $\Im[z]>0$, where $g_{a}(z)$ satisfies $g_{a}^{2}(z)-(g(z)+z) g_{a}(z)-c_{1}=0$, for $z \notin \mathcal{S}(\nu)$.

Assumption 1. As $n_{i} \rightarrow \infty$ with $\frac{n_{i}}{\sum_{j} n_{j}} \rightarrow c_{i} \in(0,1)$, there exists a sequence of critical points $\left(\hat{\lambda}, \hat{\boldsymbol{u}}^{(n)}, \hat{\boldsymbol{v}}^{(n)}, \hat{\boldsymbol{w}}^{(n)}\right)$ s.t. $\hat{\lambda} \xrightarrow{\text { a.s. }} \lambda,\left|\left\langle\mathbf{a}_{i}, \hat{\boldsymbol{u}}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{a}$ with $\lambda \notin \mathcal{S}(\nu)$ and $\rho_{a}>0$.

Theorem 1 (SGC'21). Under Assumption 1, the empirical spectral measure of $\Phi_{3}(\mathbf{T}, \hat{\boldsymbol{u}}, \boldsymbol{v}, \hat{\boldsymbol{w}})$ converges weakly to ν defined in Definition 1, i.e.

$$
\frac{1}{N} \operatorname{tr}\left(\Phi_{d}(\mathbf{T}, \hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}, \hat{\boldsymbol{w}})-z \mathbf{I}_{N \times N}\right)^{-1} \xrightarrow{\text { a.s. }} g(z)
$$

Random Matrix Approach (Goulart et al., 2022)

The optimization problem of maximum likelihood estimator (MLE) for $d=3$:

$$
\min _{\lambda>0,\|\boldsymbol{u}\|=1}\left\|\mathbf{Y}-\lambda \boldsymbol{u}^{\otimes 3}\right\|_{F}^{2} \quad \Leftrightarrow \quad \max _{\|\boldsymbol{u}\|=1}\langle\mathbf{Y}, \boldsymbol{u} \otimes \boldsymbol{u} \otimes \boldsymbol{u}\rangle
$$

The critical points satisfy (Lim, 2005):

$$
\mathbf{Y}(\boldsymbol{u}, \boldsymbol{u})=\lambda \boldsymbol{u} \quad \Leftrightarrow \quad \mathbf{Y}(\boldsymbol{u}) \boldsymbol{u}=\lambda \boldsymbol{u}, \quad\|\boldsymbol{u}\|=1
$$

where $(\mathbf{Y}(\boldsymbol{u}, \boldsymbol{u}))_{i}=\sum_{j k} u_{j} u_{k} Y_{i j k}$ et $(\mathbf{Y}(\boldsymbol{u}))_{i j}=\sum_{k} u_{k} Y_{i j k}$. The MLE \hat{x} corresponds to the dominant eigenvector of $\mathbf{Y}(\hat{\boldsymbol{x}}): \mathbf{Y}(\hat{\boldsymbol{x}}) \hat{\boldsymbol{x}}=\|\mathbf{Y}\| \hat{\boldsymbol{x}}$.

Hence, the approach from (Goulart et al., 2021) consists in studying:

$$
\mathbf{Y}(\boldsymbol{u})=\beta\langle\boldsymbol{x}, \boldsymbol{u}\rangle \boldsymbol{x} \boldsymbol{x}^{\top}+\frac{1}{\sqrt{N}} \mathbf{W}(\boldsymbol{u}) \in \mathbb{R}^{N \times N}
$$

Local maximum

$$
\begin{array}{ccc}
\text { RMT threshold } & \begin{array}{c}
\text { Statistical } \\
\text { threshold }
\end{array} & \begin{array}{c}
\text { Algorithmic } \\
\text { threshold }
\end{array} \\
\beta_{s}=O(1) & \beta_{c}=O(1) & \beta_{a}=O\left(N^{\frac{d-2}{4}}\right)
\end{array}
$$

Decomposition Algorithms and Complexity

$$
\min _{\lambda>0,\left\|\boldsymbol{u}_{i}\right\|=1}\left\|\mathbf{T}-\lambda \boldsymbol{u}_{1} \otimes \cdots \otimes \boldsymbol{u}_{d}\right\|_{F}^{2} \Rightarrow \text { NP-hard (Hillar et al., 2013) }
$$

- Tensor unfolding: $\mathcal{M}_{i}(\mathbf{T})=\beta \boldsymbol{x}_{i} \boldsymbol{y}_{i}^{\top}+\frac{1}{\sqrt{n}} \mathcal{M}_{i}(\mathbf{X}) \in \mathbb{R}^{n_{i} \times} \prod_{j \neq i}{ }^{n_{j}}$.
- Using Corollary 3 , we find $\beta_{a}=\left(\prod_{i} n_{i}\right)^{1 / 4} / \sqrt{\sum_{i} n_{i}}$.
- Coincides with $O\left(N^{\frac{d-2}{4}}\right)$ of (Ben Arous et al, 2021) for $n_{i}=N$.
- Same threshold for tensor power iteration initialized with tensor unfolding (Auddy et al., 2021).

