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Introduction: Asymmetric Rank-2 Spiked Tensor Model

Consider the rank-2 spiked tensor model:

T = β1a1 ⊗ b1 ⊗ c1︸ ︷︷ ︸
signal 1

+ β2a2 ⊗ b2 ⊗ c2︸ ︷︷ ︸
signal 2

+
1

√
n1 + n2 + n3

X︸︷︷︸
noise

∈ Rn1×n2×n3

where βt ≥ 0, ∥at∥ = ∥bt∥ = ∥ct∥ = 1 for t = 1, 2, Xijk ∼ N (0, 1) i.i.d.

Assume correlated signals:

αa := ⟨a1, a2⟩ ̸= 0, αb := ⟨b1, b2⟩ ̸= 0, αc := ⟨c1, c2⟩ ̸= 0

We focus on deflation algorithms that compute successive rank-1 approximations
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Introduction: Hotelling-type Tensor Deflation

Successive best rank-1 approximations (here for rank r = 2).
Input: Observed tensor T, Output: Rank-1 tensors ut ⊗ vt ⊗ wt, t = 1, 2, . . .

Step t = 1
Best rank-1 tensor approximation of T1 = T:

(λ̂1, û1, v̂1, ŵ1) = arg min
λ1>0,∥u1∥=∥v1∥=∥w1∥=1

∥T1 − λ1u1 ⊗ v1 ⊗ w1∥2
F

Step t = 2
Best rank-1 tensor approximation of T2 = T − λ̂1û1 ⊗ v̂1 ⊗ ŵ1:

(λ̂2, û2, v̂2, ŵ2) = arg min
λ2>0,∥u2∥=∥v2∥=∥w2∥=1

∥T2 − λ2u2 ⊗ v2 ⊗ w2∥2
F

Deflation yields wrong results for non-orthogonal tensors, even in the absence of noise (the
Eckart-Young theorem does not apply here)

This work is about quantifying the error in terms of alignment between true and estimated
singular vectors: ⟨at, ut⟩, ⟨bt, vt⟩, ⟨ct, wt⟩

As a side product, we obtain a powerful estimator for the β’s

December 11th 2023 3/13



Asymmetric Rank-1 Spiked Tensor Model

Let us take a step backward and consider a spiked rank-1 model

T = βa ⊗ b ⊗ c︸ ︷︷ ︸
signal

+
1

√
n1 + n2 + n3

X︸︷︷︸
noise

∈ Rn1×n2×n3

where β ≥ 0, ∥a∥ = ∥b∥ = ∥c∥ = 1, Xijk ∼ N (0, 1) i.i.d.
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Random Matrix Approach (Seddik et al., 2023)

A traditional estimator of the rank-1 signal is the Maximum Likelihood Estimator (MLE)

(λ̂, û, v̂, ŵ) = arg min
λ>0,∥u∥=∥v∥=∥w∥=1

∥T − λu ⊗ v ⊗ w∥2
F

The critical points of the likelihood are tensor singular vectors and satisfy (Lim, 2005):( 0n1×n1 T(·, ·, w) T(·, v, ·)
T(·, ·, w)T 0n2×n2 T(u, ·, ·)
T(·, v, ·)T T(u, ·, ·)T 0n3×n3

)
︸ ︷︷ ︸

Φ3(T,u,v,w)

(
u
v
w

)
= 2λ

(
u
v
w

)

where we have the contractions (T(·, ·, w))ij =
∑n3

k=1
wkTijk.

We establish the asymptotic (large dimensional) properties of these critical points by studying the spectrum
of Φ3(T, u, v, w) using Random Matrix Theory
Spectrum of Φ3(T, u, v, w) for random u, v, w (left) and for tensor singular vectors (right):
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Asymptotic Spectral Norm and Alignments

Assumption 1. As ni → ∞ with ni∑
j

nj

→ ci ∈ (0, 1), there exists a sequence of critical points

(λ̂(n), û(n), v̂(n), ŵ(n)) s.t. 
λ̂(n) a.s.−→ λ > λmin
|⟨a(n), û(n)⟩| a.s.−→ ρa > 0
|⟨b(n), v̂(n)⟩| a.s.−→ ρb > 0
|⟨c(n), ŵ(n)⟩| a.s.−→ ρc > 0

Theorem 1 (SGC’21). Under Assumption 1, there exists βs > 0 such that for all β > βs the
following fixed point equation holds

ρa = qa(λ), ρb = qb(λ), ρc = qc(λ), λ = βρaρbρc − g(λ)

where g(λ) = ga(λ) + gb(λ) + gc(λ) and
g2

a(z) − (g(z) + z)ga(z) − c1 = 0 , qa(z) =
√

1 − g2
a

(z)/c1

g2
b (z) − (g(z) + z)gb(z) − c2 = 0 , qb(z) =

√
1 − g2

b
(z)/c2

g2
c (z) − (g(z) + z)gc(z) − c3 = 0 , qc(z) =

√
1 − g2

c
(z)/c3
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Back to Hotelling Deflation: Spectral Measure

For both deflation steps:

Tt → analyse spectrum of Φ3(Tt, ût, v̂t, ŵt)

Assumption 2. As ni → ∞ with ni∑
j

nj

→ ci ∈ (0, 1), there exists a sequence of critical points

(λ̂(n)
t , û

(n)
t , v̂

(n)
t , ŵ

(n)
t ) s.t.

λ̂
(n)
t

a.s.−→ λt > λmin,t

|⟨a(n)
t , û

(n)
t′ ⟩| a.s.−→ ρtt′,a > 0, |⟨û(n)

t , û
(n)
t′ ⟩| a.s.−→ ηtt′,a > 0

|⟨b(n)
t , v̂

(n)
t′ ⟩| a.s.−→ ρtt′,b > 0, |⟨v̂(n)

t , v̂
(n)
t′ ⟩| a.s.−→ ηtt′,b > 0

|⟨c(n)
t , ŵ

(n)
t′ ⟩| a.s.−→ ρtt′,c > 0, |⟨ŵ(n)

t , ŵ
(n)
t′ ⟩| a.s.−→ ηtt′,c > 0
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Hotelling Deflation: Asymptotic Spectral Norm and Alignments

Theorem 2. Under Assumption 2, with n1 = n2 = n3 and αa = αb = αc = α, then it holds
ρtt′,a = ρtt′,b = ρtt′,c = ρtt′ for 1 ≤ t, t′ ≤ 2
η12,a = η12,b = η12,c = η

and 

f(λ1) −β1ρ3
11 −β2ρ3

21 = 0
h(λ1)ρ11 −β1ρ2

11 −β2αρ2
21 = 0

h(λ1)ρ21 −β1αρ2
11 −β2ρ2

21 = 0
Step 1 of deflation

f(λ2) + λ1η3 −β1ρ3
12 −β2ρ3

22 = 0
h(λ2)ρ12 + λ1ρ11η2 −β1ρ2

12 −β2αρ2
22 = 0

h(λ2)ρ22 + λ1ρ21η2 −β1αρ2
12 −β2ρ2

22 = 0
h(λ2)η + q(λ1)η2 −β1ρ11ρ2

12 −β2ρ21ρ2
22 = 0

Step 2 of deflation

where h(z) = −1
g(z) and q(z) = z + g(z)

3 and f(z) = z + g(z).
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Illustration of Signal Recovery with Deflation: Uncorrelated case

Dimensions n1 = n2 = n3 = 50
Uncorrelated case: α = 0 with a fixed β2 = 10
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Deflation step 1

ρ̂11 = |⟨a1, û1⟩|

ρ̂21 = |⟨a2, û1⟩|
ρ11
ρ21
β2 = 10
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Deflation step 2

ρ̂12 = |⟨a1, û2⟩|

ρ̂22 = |⟨a2, û2⟩|
ρ12
ρ22

If β1 < β2: signal 2 is recovered at step 1, signal 1 is recovered at step 2
If β1 > β2: signal 1 is recovered at step 1, signal 2 is recovered at step 2
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Illustration of Signal Recovery with Deflation: Correlated case

Dimensions n1 = n2 = n3 = 50
Correlated case: α = 0.4 with a fixed β2 = 10
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Deflation step 1

ρ̂11 = |⟨a1, û1⟩|
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Deflation step 2

ρ̂12 = |⟨a1, û2⟩|

ρ̂22 = |⟨a2, û2⟩|
ρ12
ρ22

If β1 ≪ β2: signal 2 is recovered at step 1, signal 1 is recovered at step 2
If β1 ≈ β2: Interference regime, the output of the deflation is correlated with both signals
If β1 ≫ β2: signal 1 is recovered at step 1, signal 2 is recovered at step 2
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Illustration of Signal Recovery with Deflation: Correlated case

Dimensions n1 = n2 = n3 = 50
Correlated case: α = 0.7 with a fixed β2 = 10

5 β1 = β2 15 20 25 30
0

0.2

0.4

0.6

0.8

1

β1

A
lig

nm
en

t

Deflation step 1
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Deflation step 2

ρ̂12 = |⟨a1, û2⟩|

ρ̂22 = |⟨a2, û2⟩|
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For β1 ⪆ 4, the set of fixed point equations admits two solutions (·(1) and ·(2)) corresponding
to multiple critical points of the MLE
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RTT-aided Power estimation
Naive estimator:

Use the λ̂i from the deflation as estimates for the true powers βi (up to reordering)
Better estimator using random tensor theory:

The system of equations from Theorem 1 links the true (β1, β2) and (improperly) estimated (λ1, λ2)
power terms, in the aymptotic regime of large dimensions
β̂1, β̂2 are obtained by solving the asymptotic system of equations where we plug λ̂t in place of λt

Ψ︸︷︷︸
7 equations

system

( λ̂1, λ̂2, η̂,︸ ︷︷ ︸
Depend on

deflation outputs

β̂1, β̂2, α̂, ρ̂11, ρ̂12, ρ̂21, ρ̂22︸ ︷︷ ︸
Solution of the
equation system

) = 0

Numerical comparison: λ̂1, λ̂2, β̂1, β̂2 vs. β1 for fixed β2 = 10
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Take Away Messages

Hotelling-type deflation fails to properly recover low-rank non-orthogonal tensor signals

RMT was used to characterize the alignments between true signals and deflation outputs in
the asymptotic dimension regime

This enables a more accurate signal power estimation algorithm

Ongoing work:

Study the existence and uniqueness of the solutions of the asymptotic fixed point equations.

Study RTT-aided signals estimators by ”unbiasing” deflation outputs

Thank you for your attention!
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Backup slides
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Spectral Measure of Φ3(T, û1, û2, û3)

Stieltjes Transform. The Stieltjes transform of a probability measure ν is gν(z) =
∫

dν(λ)
λ−z

,
z ∈ C \ S(ν).

Definition 1. Let ν by the probability measure with Stieltjes transform g(z) = ga(z)+gb(z)+gc(z)
verifying ℑ[g(z)] > 0 for ℑ[z] > 0, where ga(z) satisfies g2

a(z) − (g(z) + z)ga(z) − c1 = 0, for
z /∈ S(ν).

Assumption 1. As ni → ∞ with ni∑
j

nj

→ ci ∈ (0, 1), there exists a sequence of critical points

(λ̂, û(n), v̂(n), ŵ(n)) s.t. λ̂
a.s.−→ λ, |⟨ai, û⟩| a.s.−→ ρa with λ /∈ S(ν) and ρa > 0.

Theorem 1 (SGC’21). Under Assumption 1, the empirical spectral measure of Φ3(T, û, v, ŵ)
converges weakly to ν defined in Definition 1, i.e.

1
N

tr (Φd(T, û, v̂, ŵ) − zIN×N )−1 a.s.−→ g(z)
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Random Matrix Approach (Goulart et al., 2022)
The optimization problem of maximum likelihood estimator (MLE) for d = 3:

min
λ>0, ∥u∥=1

∥∥Y − λu
⊗3

∥∥2

F
⇔ max

∥u∥=1
⟨Y, u ⊗ u ⊗ u⟩

The critical points satisfy (Lim, 2005):

Y(u, u) = λu ⇔ Y(u)u = λu, ∥u∥ = 1

where (Y(u, u))i =
∑

jk
ujukYijk et (Y(u))ij =

∑
k

ukYijk. The MLE x̂ corresponds to the
dominant eigenvector of Y(x̂) : Y(x̂)x̂ = ∥Y∥x̂.

Hence, the approach from (Goulart et al., 2021) consists in studying:

Y(u) = β⟨x, u⟩xx
⊤ +

1
√

N
W(u) ∈ RN×N

Impossible NP-hard Simple

Statistical  
threshold 

Algorithmic 
threshold 

RMT threshold

Local maximum
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Decomposition Algorithms and Complexity

min
λ>0, ∥ui∥=1

∥T − λu1 ⊗ · · · ⊗ ud∥2
F ⇒ NP-hard (Hillar et al., 2013)

Tensor unfolding: Mi(T) = βxiy⊤
i + 1√

n
Mi(X) ∈ R

ni×
∏

j ̸=i
nj .

Using Corollary 3, we find βa =
(∏

i
ni

)1/4
/
√∑

i
ni.

Coincides with O

(
N

d−2
4

)
of (Ben Arous et al, 2021) for ni = N .

Same threshold for tensor power iteration initialized with tensor unfolding (Auddy et al., 2021).
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