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Introduction: Asymmetric Spiked Tensor Model

T
=

x1

x2

x3

Tijk

x1i

x2j

x3k

X
+ Xijkβ x

We consider the following model: (x1 ⊗ x2 ⊗ x3)ijk = x1ix2jx3k

T = βx1 ⊗ · · · ⊗ xd︸ ︷︷ ︸
signal

+
1
√

n
X︸︷︷︸

bruit

∈ Rn1×···×nd

where β ≥ 0, ∥xi∥ = 1, Xi1...id
∼ N (0, 1) i.i.d. and n =

∑d

i=1 ni.

▶ Is it possible to recover the signal in theory? for which critical value of β?
▶ What alignment ⟨xi, ui⟩ between the signal and an estimator ui(T)?
▶ Is there an algorithm that can recover the signal in polynomial time?

Nancy, 9 September 2022 Gretsi 2022
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Related Works: Symmetric Case

Introduced initially by (Montanari & Richard, 2014)

Y = βx⊗d +
1
√

N
W ∈ RN×···×N

where ∥x∥ = 1 and W has random Gaussian entries and is symmetric.This is a
natural extension of the classical spiked matrix model Y = βxx⊤ + 1√

N
W .

Impossible NP-complexe Simple

Seuil 
statistique 

Seuil 
algorithmique 

Other works in the literature include: (Montanari et al., 2015), (Hopkins et al.,
2020), (Kim et al., 2017), (Ben Arous et al., 2019), (Jagannath et al, 2020),
(Perry et al., 2020), (Ros et al., 2020), (Goulart et al., 2021).

Of which Goulart et al. "A random matrix perspective on random tensors",
2021.

Nancy, 9 September 2022 Gretsi 2022
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Random Matrix Approach (Goulart et al., 2021)
The optimization problem of maximum likelihood estimator (MLE) for d = 3:

min
λ>0, ∥u∥=1

∥∥Y− λu⊗3
∥∥2

F
⇔ max

∥u∥=1
⟨Y, u⊗ u⊗ u⟩

The critical points satisfy (Lim, 2005) :

Y(u, u) = λu ⇔ Y(u)u = λu, ∥u∥ = 1

where (Y(u, u))i =
∑

jk
ujukYijk et (Y(u))ij =

∑
k

ukYijk. The MLE
x̂ corresponds to the dominant eigenvector of Y(x̂) : Y(x̂)x̂ = ∥Y∥x̂.

Hence, the approach from (Goulart et al., 2021) consists in studying:

Y(u) = β⟨x, u⟩xx⊤ +
1
√

N
W(u) ∈ RN×N

Impossible NP-complexe Simple

Seuil 
statistique 

Seuil 
algorithmique Seuil RMT

Maximum local

Nancy, 9 September 2022 Gretsi 2022
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Tensors Singular Values and Vectors

The optimization problem of MLE for d = 3:

min
λ>0, ∥ui∥=1

∥T− λu1 ⊗ u2 ⊗ u3∥2
F ⇔ max∏3

i=1
∥ui∥=1

⟨T, u1 ⊗ u2 ⊗ u3⟩

The critical points satisfy (Lim, 2005) :

T(In1 , u2, u3) = λu1, T(u1, In2 , u3) = λu2, T(u1, u2, In3 ) = λu3

where ∥ui∥ = 1 for all i ∈ [3] and (T(In1 , u2, u3))i =
∑

jk
u2ju3kTijk.

▶ In contrast to the symmetric case, the choice of the associated contraction
matrix is not straightforward. For instance:

T(u3) ≡ T(In1 , In2 , u3) = β⟨x3, u3⟩x1x⊤
2 +

1
√

n
X(In1 , In2 , u3) ∈ Rn1×n2

Objectives:
▶ Evaluate the asymptotic limits of λ∗ and ⟨xi, u∗

i ⟩ associated (a priori) to
the MLE when ni →∞.

▶ Define a symmetric random matrix that is equivalent to T.

Nancy, 9 September 2022 Gretsi 2022
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Associated Random Matrix to T

Stein’s Lemma: Let X ∼ N (0, 1), then E[Xf(X)] = E[f ′(X)].

Recall λ = T(u1, u2, u3) = 1√
n

∑
ijk

u1iu2ju3kXijk + β
∏3

i=1⟨xi, ui⟩.

E[λ] =
1
√

n

∑
ijk

E

[
u2ju3k

∂u1i

∂Xijk

]
+ E

[
u1iu3k

∂u2j

∂Xijk

]
+ E

[
u1iu2j

∂u3k

∂Xijk

]
+ .


∂u1

∂Xijk
∂u2

∂Xijk
∂u3

∂Xijk

 ≃ − 1
√

n


[

0n1×n1 T(u3) T(u2)
T(u3)⊺ 0n2×n2 T(u1)
T(u2)⊺ T(u1)⊺ 0n3×n3

]
︸ ︷︷ ︸

Φ3(T,u1,u2,u3)

− λIn


−1 [

u2ju3ken1
i

u1iu3ken2
j

u1iu2jen3
k

]

The resolvent matrix: R(z) = (Φ3(T, u1, u2, u3)− zIn)−1.
When ni →∞, the non-vanishing terms involve the trace of R(z),

λ +
1
n

tr R(λ) = β

3∏
i=1

⟨xi, ui⟩

Nancy, 9 September 2022 Gretsi 2022
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Spectral Measure of Φd(T, u1, . . . , ud)

Stieltjes Transform: The Stieltjes transform of a probability measure ν is
gν(z) =

∫
dν(λ)
λ−z

, z ∈ C \ S(ν).

For S ∈ Symn with λi its eigenvalues, the empirical spectral measure (ESM)
of S and its associated Stieltjes transform are:

νS =
1
n

n∑
i=1

δλi
, gνS (z) =

1
n

n∑
i=1

1
λi − z

=
1
n

tr RS(z), z ∈ C \ S(νS)

where RS(z) = (S − zIn)−1 is the resolvent of S.

Theorem 1. When ni → ∞ with ni∑
j

nj

→ ci ∈ [0, 1], the ESM of

Φd(T, u1, . . . , ud) converges to a deterministic measure ν having as Stielt-
jes transform 1

n
tr R(z) a.s.−→ g(z) =

∑d

i=1 gi(z) verifying ℑ[g(z)] > 0 for
ℑ[z] > 0, where

1
n

tr Rii(z) a.s.−→ gi(z) =
g(z) + z

2
−

√
4ci + (g(z) + z)2

2
, z ∈ C \ S(ν)

Remark: (λ, u1, . . . , ud) must satisfy λ /∈ S(ν) and |⟨xi, ui⟩| > 0.

Nancy, 9 September 2022 Gretsi 2022
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Spectral Measure of Φd(T, u1, . . . , ud)

Corollary 1. When ci = 1
d

for all i ∈ [d], the ESM of Φd(T, u1, . . . , ud)

converges to a semi-circle law ν of compact support
[
−2

√
d−1

d
, 2

√
d−1

d

]
,

where

ν(dx) =
d

2(d− 1)π

√(4(d− 1)
d

− x2
)+

, g(z) =
−zd + d

√
z2 − 4(d−1)

d

2(d− 1)

Figure: Spectrum of Φ3(T, u1, u2, u3) at iterations 0, 5, ∞ of the tensor power iteration
algorithm applied on T. n1 = n2 = n3 = 100 and β = 0.

u1 ←
T(In1 , u2, u3)
∥T(In1 , u2, u3)∥

, u2 ←
T(u1, In2 , u3)
∥T(u1, In2 , u3)∥

, u3 ←
T(u1, u2, In3 )
∥T(u1, u2, In3 )∥

Nancy, 9 September 2022 Gretsi 2022
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Asymptotic Spectral Norm and Alignments

T(x1, u2, u3) = λ⟨x1, u1⟩ ⇒︸︷︷︸
Stein

[λ + g2(λ) + g3(λ)] ⟨x1, u1⟩ = β

3∏
i=2

⟨xi, ui⟩

Theorem 2. For all d ≥ 3, when ni →∞ with ni∑
j

nj

→ ci ∈ (0, 1), there

exists βs > 0 such that for all β > βs

λ∗ a.s.−→ λ∞, |⟨xi, u∗
i ⟩|

a.s.−→ qi(λ∞, β) =

√
1−

g2
i (λ∞)

ci

where λ∞ satisfies f(λ∞, β) = 0 with f(z, β) = z +g(z)−β
∏d

i=1 qi(z, β),
and

qi(z, β) =
(

αi(z, β)d−3∏
j ̸=i

αj(z, β)

) 1
2d−4

, αi(z, β) =
β

z + g(z)− gi(z)

for β ∈ [0, βs], λ∞ is bounded and |⟨xi, u∗
i ⟩|

a.s.−→ 0.

Nancy, 9 September 2022 Gretsi 2022
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Asymptotic Spectral Norm and Alignments
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Cubic Tensors

Corollary 2. If d = 3 with ci = 1
3 , then for all β > 2

√
3

3
λ∗ a.s.−→

√
β2

2 + 2 +
√

3
√

(3β2−4)3

18β

∣∣⟨xi, u∗
i ⟩

∣∣ a.s.−→

√
9β2−12+

√
3
√

(3β2−4)3

β
+

√
9β2+36+

√
3
√

(3β2−4)3

β

6
√

2β

Nancy, 9 September 2022 Gretsi 2022
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Spiked Matrix Model

For d = 3, n3 = 1 ⇒ M = βxy⊤ +
1

√
n1 + n2

X ∈ Rn1×n2

Corollary 3. If d = 3 with c1 = c et c2 = 1 − c for c ∈ [0, 1], the spiked
tensor model becomes a spiked matrix model (i.e. c3 = 0).

Let κ(β, c) = β

√
β2(β2+1)−c(c−1)

(β4+c(c−1))(β2+1−c) , for β > βs = 4
√

c(1− c)

λ∗ a.s.−→

√
β2 + 1 +

c(1− c)
β2 , |⟨xi, u∗

i ⟩|
a.s.−→

1
κ(β, ci)

, i ∈ {1, 2}

while for β ∈ [0, βs], λ∗ a.s.−→
√

1 + 2
√

c(1− c) et
∣∣⟨xi, u∗

i ⟩
∣∣ a.s.−→ 0.

Nancy, 9 September 2022 Gretsi 2022
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Decomposition Algorithms and Complexity

min
λ>0, ∥ui∥=1

∥T− λu1 ⊗ · · · ⊗ ud∥2
F ⇒ NP-hard (Hillar et al., 2013)

▶ Tensor unfolding: Mi(T) = βxiy
⊤
i + 1√

n
Mi(X) ∈ R

ni×
∏

j ̸=i
nj .

▶ Using Corollary 3, we find βa =
(∏

i
ni

)1/4
/
√∑

i
ni.

▶ Coincides with O

(
N

d−2
4

)
of (Ben Arous et al, 2021) for ni = N .

▶ Same threshold for tensor power iteration initialized with tensor unfolding
(Auddy et al., 2021).

Nancy, 9 September 2022 Gretsi 2022
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Take Away Messages

▶ The RMT approach allows the study of asymmetric spiked tensor models.
▶ The obtained results characterize the performance of the MLE for β large

enough (i.e., β ≥ βc).

Impossible NP-complexe Simple

Seuil 
statistique 

Seuil 
algorithmique Seuil RMT

Maximum local

Open questions:
▶ Still unclear how to characterize the phase transition of the MLE with the

RMT approach.
▶ Is it possible to find a polynomial time algorithm that is consistent below

the computational threshold βa?
▶ Universality and generalization to higher-ranks.

Thank you for your attention!
https://arxiv.org/abs/2112.12348
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