When Random Tensors meet Random Matrices

Gretsi 2022

Introduction

Asymmetric Spflted Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Outline

Introduction

Asymmetric Spiked Tensor Model Related Works
Random Matrix Approach

```
Analysis of the Asymmetric Spiked Tensor Model
```

Analysis of the Asymmetric Spiked Tensor Model
Tensors Singular Values and Vectors
Tensors Singular Values and Vectors
Associated Random Matrix
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

```
    Asymptotic Spectral Norm and Alignments
```

Decomposition Algorithms and Complexity

Introduction: Asymmetric Spiked Tensor Model

We consider the following model: $\left(x_{1} \otimes x_{2} \otimes x_{3}\right)_{i j k}=x_{1 i} x_{2 j} x_{3 k}$

$$
\mathbf{T}=\underbrace{\beta x_{1} \otimes \cdots \otimes x_{d}}_{\text {signal }}+\frac{1}{\sqrt{n}} \underbrace{\mathbf{X}}_{\text {bruit }} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}
$$

where $\beta \geq 0,\left\|\boldsymbol{x}_{i}\right\|=1, X_{i_{1} \ldots i_{d}} \sim \mathcal{N}(0,1)$ i.i.d. and $n=\sum_{i=1}^{d} n_{i}$.

- Is it possible to recover the signal in theory? for which critical value of β ?
\checkmark What alignment $\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}\right\rangle$ between the signal and an estimator $\boldsymbol{u}_{i}(\mathbf{T})$?
- Is there an algorithm that can recover the signal in polynomial time?

Related Works: Symmetric Case

Introduced initially by (Montanari \& Richard, 2014)

$$
\mathbf{Y}=\beta \boldsymbol{x}^{\otimes d}+\frac{1}{\sqrt{N}} \mathbf{W} \in \mathbb{R}^{N \times \cdots \times N}
$$

where $\|\boldsymbol{x}\|=1$ and \mathbf{W} has random Gaussian entries and is symmetric. This is a natural extension of the classical spiked matrix model $Y=\beta x x^{\top}+\frac{1}{\sqrt{N}} W$.

Other works in the literature include: (Montanari et al., 2015), (Hopkins et al., 2020), (Kim et al., 2017), (Ben Arous et al., 2019), (Jagannath et al, 2020), (Perry et al., 2020), (Ros et al., 2020), (Goulart et al., 2021).

Of which Goulart et al. "A random matrix perspective on random tensors'", 2021.

Random Matrix Approach (Goulart et al., 2021)

The optimization problem of maximum likelihood estimator (MLE) for $d=3$:

$$
\min _{\lambda>0,\|\boldsymbol{u}\|=1}\left\|\mathbf{Y}-\lambda \boldsymbol{u}^{\otimes 3}\right\|_{F}^{2} \quad \Leftrightarrow \quad \max _{\|\boldsymbol{u}\|=1}\langle\mathbf{Y}, \boldsymbol{u} \otimes \boldsymbol{u} \otimes \boldsymbol{u}\rangle
$$

The critical points satisfy (Lim, 2005) :

$$
\mathbf{Y}(\boldsymbol{u}, \boldsymbol{u})=\lambda \boldsymbol{u} \quad \Leftrightarrow \quad \mathbf{Y}(\boldsymbol{u}) \boldsymbol{u}=\lambda u, \quad\|\boldsymbol{u}\|=1
$$

where $(\mathbf{Y}(\boldsymbol{u}, \boldsymbol{u}))_{i}=\sum_{j k} u_{j} u_{k} Y_{i j k}$ et $(\mathbf{Y}(\boldsymbol{u}))_{i j}=\sum_{k} u_{k} Y_{i j k}$. The MLE \hat{x} corresponds to the dominant eigenvector of $\mathbf{Y}(\hat{\boldsymbol{x}}): \mathbf{Y}(\hat{x}) \hat{x}=\|\mathbf{Y}\| \hat{x}$.

Hence, the approach from (Goulart et al., 2021) consists in studying:

$$
\mathbf{Y}(\boldsymbol{u})=\beta\langle\boldsymbol{x}, \boldsymbol{u}\rangle \boldsymbol{x} \boldsymbol{x}^{\top}+\frac{1}{\sqrt{N}} \mathbf{W}(\boldsymbol{u}) \in \mathbb{R}^{N \times N}
$$

Maximum local

MEA. Seddik et al. Introduction
Asymmetric Spikerd Tensor Model

Related Works

Random Matrix Approach

Tensors Singular Vahues and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Outline

Introduction
Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach

Analysis of the Asymmetric Spiked Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

When Random
Tensors meet Random Matrices

MEA. Seddik et al.

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and

Decomposition Algorithms and Complexity

Tensors Singular Values and Vectors

The optimization problem of MLE for $d=3$:

$$
\min _{\lambda>0,\left\|\boldsymbol{u}_{i}\right\|=1}\left\|\mathbf{T}-\lambda \boldsymbol{u}_{1} \otimes \boldsymbol{u}_{2} \otimes \boldsymbol{u}_{3}\right\|_{F}^{2} \Leftrightarrow \prod_{\prod_{i=1}^{3}\left\|\boldsymbol{u}_{i}\right\|=1}^{\max }\left\langle\mathbf{T}, \boldsymbol{u}_{1} \otimes \boldsymbol{u}_{2} \otimes \boldsymbol{u}_{3}\right\rangle
$$

The critical points satisfy (Lim, 2005) :

$$
\mathbf{T}\left(\boldsymbol{I}_{n_{1}}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)=\lambda \boldsymbol{u}_{1}, \mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{I}_{n_{2}}, \boldsymbol{u}_{3}\right)=\lambda \boldsymbol{u}_{2}, \mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{I}_{n_{3}}\right)=\lambda \boldsymbol{u}_{3}
$$

where $\left\|\boldsymbol{u}_{i}\right\|=1$ for all $i \in[3]$ and $\left(\mathbf{T}\left(\boldsymbol{I}_{n_{1}}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)\right)_{i}=\sum_{j k} u_{2 j} u_{3 k} T_{i j k}$.

- In contrast to the symmetric case, the choice of the associated contraction matrix is not straightforward. For instance:
$\mathbf{T}\left(\boldsymbol{u}_{3}\right) \equiv \mathbf{T}\left(\boldsymbol{I}_{n_{1}}, \boldsymbol{I}_{n_{2}}, \boldsymbol{u}_{3}\right)=\beta\left\langle\boldsymbol{x}_{3}, \boldsymbol{u}_{3}\right\rangle \boldsymbol{x}_{1} \boldsymbol{x}_{2}^{\top}+\frac{1}{\sqrt{n}} \mathbf{X}\left(\boldsymbol{I}_{n_{1}}, \boldsymbol{I}_{n_{2}}, \boldsymbol{u}_{3}\right) \in \mathbb{R}^{n_{1} \times n_{2}}$
Objectives:
- Evaluate the asymptotic limits of λ^{*} and $\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}^{*}\right\rangle$ associated (a priori) to the MLE when $n_{i} \rightarrow \infty$.
- Define a symmetric random matrix that is equivalent to \mathbf{T}.

Associated Random Matrix to T

Stein's Lemma: Let $X \sim \mathcal{N}(0,1)$, then $\mathbb{E}[X f(X)]=\mathbb{E}\left[f^{\prime}(X)\right]$.

Recall $\lambda=\mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)=\frac{1}{\sqrt{n}} \sum_{i j k} u_{1 i} u_{2 j} u_{3 k} X_{i j k}+\beta \prod_{i=1}^{3}\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}\right\rangle$.
$\mathbb{E}[\lambda]=\frac{1}{\sqrt{n}} \sum_{i j k} \mathbb{E}\left[u_{2 j} u_{3 k} \frac{\partial u_{1 i}}{\partial X_{i j k}}\right]+\mathbb{E}\left[u_{1 i} u_{3 k} \frac{\partial u_{2 j}}{\partial X_{i j k}}\right]+\mathbb{E}\left[u_{1 i} u_{2 j} \frac{\partial u_{3 k}}{\partial X_{i j k}}\right]+$

$$
\left[\begin{array}{l}
\frac{\partial \boldsymbol{u}_{1}}{\partial X_{i j k}} \\
\frac{\partial \boldsymbol{u}_{2}}{\partial X_{i j k}} \\
\frac{\partial \boldsymbol{u}_{3}}{\partial X_{i j k}}
\end{array}\right] \simeq-\frac{1}{\sqrt{n}}(\underbrace{\left[\begin{array}{lll}
\mathbf{0}_{n_{1} \times n_{1}} & \mathbf{T}\left(\boldsymbol{u}_{3}\right) & \mathbf{T}\left(\boldsymbol{u}_{2}\right) \\
\mathbf{T}\left(\boldsymbol{u}_{3}\right)^{\top} & \mathbf{0}_{n_{2} \times n_{2}} & \mathbf{T}\left(\boldsymbol{u}_{1}\right) \\
\mathbf{T}\left(\boldsymbol{u}_{2}\right)^{\top} & \mathbf{T}\left(\boldsymbol{u}_{1}\right)^{\top} & \mathbf{0}_{n_{3} \times n_{3}}
\end{array}\right]}_{\boldsymbol{\Phi}_{3}\left(\mathbf{T}, \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)}-\lambda \boldsymbol{I}_{n})^{-1}\left[\begin{array}{l}
u_{2 j} u_{3 k} \boldsymbol{e}_{i_{1}}^{n_{1}} \\
u_{1 i} u_{3 k} \boldsymbol{e}_{j}^{n_{2}} \\
u_{1 i} u_{2 j} \boldsymbol{e}_{k}^{n_{3}}
\end{array}\right]
$$

The resolvent matrix: $\boldsymbol{R}(z)=\left(\boldsymbol{\Phi}_{3}\left(\mathbf{T}, \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)-z \boldsymbol{I}_{n}\right)^{-1}$.
When $n_{i} \rightarrow \infty$, the non-vanishing terms involve the trace of $\boldsymbol{R}(z)$,

$$
\lambda+\frac{1}{n} \operatorname{tr} \boldsymbol{R}(\lambda)=\beta \prod_{i=1}^{3}\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}\right\rangle
$$

Introduction

Asymmetric Spiked Tensor Model

Related Works

Random Matrix Approach

Asymmetric Spiked

Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Spectral Measure of $\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)$

Stieltjes Transform: The Stieltjes transform of a probability measure ν is $g_{\nu}(z)=\int \frac{d \nu(\lambda)}{\lambda-z}, z \in \mathbb{C} \backslash \mathcal{S}(\nu)$.

For $S \in \operatorname{Sym}_{n}$ with λ_{i} its eigenvalues, the empirical spectral measure (ESM) of S and its associated Stieltjes transform are:
$\nu_{S}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}}, g_{\nu_{S}}(z)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_{i}-z}=\frac{1}{n} \operatorname{tr} \boldsymbol{R}_{S}(z), z \in \mathbb{C} \backslash \mathcal{S}\left(\nu_{S}\right)$
where $\boldsymbol{R}_{\boldsymbol{S}}(z)=\left(S-z \boldsymbol{I}_{n}\right)^{-1}$ is the resolvent of S.
MEA. Seddik et al.

Theorem 1. When $n_{i} \rightarrow \infty$ with $\frac{n_{i}}{\sum_{j} n_{j}} \rightarrow c_{i} \in[0,1]$, the ESM of $\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)$ converges to a deterministic measure ν having as Stieltjes transform $\frac{1}{n} \operatorname{tr} \boldsymbol{R}(z) \xrightarrow{\text { a.s. }} g(z)=\sum_{i=1}^{d} g_{i}(z)$ verifying $\Im[g(z)]>0$ for $\Im[z]>0$, where

$$
\frac{1}{n} \operatorname{tr} \boldsymbol{R}^{i i}(z) \xrightarrow{\text { a.s. }} g_{i}(z)=\frac{g(z)+z}{2}-\frac{\sqrt{4 c_{i}+(g(z)+z)^{2}}}{2}, \quad z \in \mathbb{C} \backslash \mathcal{S}(\nu)
$$

Remark: $\left(\lambda, u_{1}, \ldots, u_{d}\right)$ must satisfy $\lambda \notin \mathcal{S}(\nu)$ and $\left|\left\langle\boldsymbol{x}_{i}, u_{i}\right\rangle\right|>0$.

Spectral Measure of $\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)$

 whereCorollary 1. When $c_{i}=\frac{1}{d}$ for all $i \in[d]$, the ESM of $\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)$ converges to a semi-circle law ν of compact support $\left[-2 \sqrt{\frac{d-1}{d}}, 2 \sqrt{\frac{d-1}{d}}\right]$,

$$
\nu(d x)=\frac{d}{2(d-1) \pi} \sqrt{\left(\frac{4(d-1)}{d}-x^{2}\right)^{+}}, g(z)=\frac{-z d+d \sqrt{z^{2}-\frac{4(d-1)}{d}}}{2(d-1)}
$$

Figure: Spectrum of $\Phi_{3}\left(\mathbf{T}, \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)$ at iterations $0,5, \infty$ of the tensor power iteration algorithm applied on \mathbf{T}. $n_{1}=n_{2}=n_{3}=100$ and $\beta=0$.
$\boldsymbol{u}_{1} \leftarrow \frac{\mathbf{T}\left(\boldsymbol{I}_{n_{1}}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)}{\left\|\mathbf{T}\left(\boldsymbol{I}_{n_{1}}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)\right\|}$

$$
\boldsymbol{u}_{2} \leftarrow \frac{\mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{I}_{n_{2}}, \boldsymbol{u}_{3}\right)}{\left\|\mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{I}_{n_{2}}, \boldsymbol{u}_{3}\right)\right\|}
$$

Tensors meet Ra
Matrices
MEA. Seddik et al.

Introduction
Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked ensor Mode

Tensors Singular Vellues and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

$$
\boldsymbol{u}_{3} \leftarrow \frac{\mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{I}_{n_{3}}\right)}{\left\|\mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{I}_{n_{3}}\right)\right\|}
$$

Asymptotic Spectral Norm and Alignments

MEA. Seddik et al.

$$
\mathbf{T}\left(x_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)=\lambda\left\langle\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right\rangle \underbrace{\Rightarrow}_{\text {Stein }} \quad\left[\lambda+g_{2}(\lambda)+g_{3}(\lambda)\right]\left\langle\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right\rangle=\beta \prod_{i=2}^{3}\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}\right\rangle
$$

Theorem 2. For all $d \geq 3$, when $n_{i} \rightarrow \infty$ with $\frac{n_{i}}{\sum_{j} n_{j}} \rightarrow c_{i} \in(0,1)$, there exists $\beta_{s}>0$ such that for all $\beta>\beta_{s}$

$$
\lambda^{*} \xrightarrow{\text { a.s. }} \lambda^{\infty}, \quad\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}^{*}\right\rangle\right| \xrightarrow{\text { a.s. }} q_{i}\left(\lambda^{\infty}, \beta\right)=\sqrt{1-\frac{g_{i}^{2}\left(\lambda^{\infty}\right)}{c_{i}}}
$$

where λ^{∞} satisfies $f\left(\lambda^{\infty}, \beta\right)=0$ with $f(z, \beta)=z+g(z)-\beta \prod_{i=1}^{d} q_{i}(z, \beta)$, and

$$
q_{i}(z, \beta)=\left(\frac{\alpha_{i}(z, \beta)^{d-3}}{\prod_{j \neq i} \alpha_{j}(z, \beta)}\right)^{\frac{1}{2 d-4}}, \quad \alpha_{i}(z, \beta)=\frac{\beta}{z+g(z)-g_{i}(z)}
$$

for $\beta \in\left[0, \beta_{s}\right], \lambda^{\infty}$ is bounded and $\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}^{*}\right\rangle\right| \xrightarrow{\text { a.s. }} 0$.

Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Asymptotic Spectral Norm and Alignments

MEA. Seddik et al.

Cubic Tensors

Corollary 2. If $d=3$ with $c_{i}=\frac{1}{3}$, then for all $\beta>\frac{2 \sqrt{3}}{3}$

$$
\left\{\begin{array}{l}
\lambda^{*} \stackrel{\text { a.s. }}{\longrightarrow} \sqrt{\frac{\beta^{2}}{2}+2+\frac{\sqrt{3} \sqrt{\left(3 \beta^{2}-4\right)^{3}}}{18 \beta}} \\
\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}^{*}\right\rangle\right| \xrightarrow{\text { a.s. }} \frac{\sqrt{9 \beta^{2}-12+\frac{\sqrt{3} \sqrt{\left(3 \beta^{2}-4\right)^{3}}}{\beta}}+\sqrt{9 \beta^{2}+36+\frac{\sqrt{3} \sqrt{\left(3 \beta^{2}-4\right)^{3}}}{\beta}}}{6 \sqrt{2} \beta}
\end{array}\right.
$$

Spiked Matrix Model

$$
\text { For } d=3, n_{3}=1 \quad \Rightarrow \quad \boldsymbol{M}=\beta \boldsymbol{x} \boldsymbol{y}^{\top}+\frac{1}{\sqrt{n_{1}+n_{2}}} \boldsymbol{X} \in \mathbb{R}^{n_{1} \times n_{2}}
$$

Corollary 3. If $d=3$ with $c_{1}=c$ et $c_{2}=1-c$ for $c \in[0,1]$, the spiked tensor model becomes a spiked matrix model (i.e. $c_{3}=0$).
Let $\kappa(\beta, c)=\beta \sqrt{\frac{\beta^{2}\left(\beta^{2}+1\right)-c(c-1)}{\left(\beta^{4}+c(c-1)\right)\left(\beta^{2}+1-c\right)}}$, for $\beta>\beta_{s}=\sqrt[4]{c(1-c)}$

$$
\lambda^{*} \xrightarrow{\text { a.s. }} \sqrt{\beta^{2}+1+\frac{c(1-c)}{\beta^{2}}}, \quad\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}^{*}\right\rangle\right| \xrightarrow{\text { a.s. }} \frac{1}{\kappa\left(\beta, c_{i}\right)}, i \in\{1,2\}
$$

while for $\beta \in\left[0, \beta_{s}\right], \lambda^{*} \xrightarrow{\text { a.s. }} \sqrt{1+2 \sqrt{c(1-c)}}$ et $\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}^{*}\right\rangle\right| \xrightarrow{\text { a.s. }} 0$.

MEA. Seddik et al. introduction
Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
ensor Model
Tensors Singular Values and Vectors

Asymptotic Spectral Norm and Alignments

Outline

$15 / 18$

When Random Tensors meet Random Matrices

MEA. Seddik et al.

Introduction

Asymmetric Spiked Tensor Model

Related Works

Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix

```
Analysis of the Asymmetric Spiked Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments
```

Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity

Decomposition Algorithms and Complexity

Decomposition Algorithms and Complexity

$$
\min _{\lambda>0,\left\|\boldsymbol{u}_{i}\right\|=1}\left\|\mathbf{T}-\lambda \boldsymbol{u}_{1} \otimes \cdots \otimes \boldsymbol{u}_{d}\right\|_{F}^{2} \Rightarrow \text { NP-hard (Hillar et al., 2013) }
$$

MEA. Seddik et al.

ntroduction

Asymmetric Spiked Tensor Model

Related Works

Random Matrix Approach

Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition Algorithms and Complexity

Take Away Messages

- The RMT approach allows the study of asymmetric spiked tensor models.
- The obtained results characterize the performance of the MLE for β large enough (i.e., $\beta \geq \beta_{c}$).

Open questions:

- Still unclear how to characterize the phase transition of the MLE with the RMT approach.
- Is it possible to find a polynomial time algorithm that is consistent below the computational threshold β_{a} ?
- Universality and generalization to higher-ranks.

Thank you for your attention!

$$
\text { https://arxiv.org/abs/2112. } 12348
$$

References

> Andrea Montanari and Emile Richard. "A statistical model for tensor PCA". In: arXiv preprint arXiv:1411.1076 (2014)
Aukosh Jagannath, Patrick Lopatto, and Leo Miolane. "Statistical thresholds for tensor PCA". In: The Annals of Applied Probability 30.4 (2020), pp. 1910-1933
Amelia Perry, Alexander S. Wein, and Afonso S. Bandeira. "Statistical limits of spiked tensor models". In: Annales de I'Institut Henri Poincaré, Probabilités et Statistiques. Vol. 56. 1. Institut Henri Poincaré. 2020, pp. 230-264 José Henrique Goulart, Romain Couillet, and Pierre Comon. "A Random Matrix Perspective on Random Tensors". In: stat 1050 (2021), p. 2
Lek-Heng Lim. "Singular values and eigenvalues of tensors: a variational approach". In: Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. 2005, pp. 129-132
Christopher J Hillar and Lek-Heng Lim. "Most tensor problems are NP-hard". In: Journal of the ACM (JACM) 60.6 (2013), pp. 1-39
Gérard Ben Arous, Daniel Zhengyu Huang, and Jiaoyang Huang. "Long Random Matrices and Tensor Unfolding". In: arXiv preprint arXiv:2110.10210 (2021)

Arnab Auddy and Ming Yuan. "On Estimating Rank-One Spiked Tensors in the Presence of Heavy Tailed Errors". In: arXiv preprint arXiv:2107.09660 (2021) Mohamed El Amine Seddik, Maxime Guillaud, and Romain Couillet. "When Random Tensors meet Random Matrices". In: arXiv preprint arXiv:2112.12348 (2021)

