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Introduction:

Asymmetric Spiked Tensor Model

'd N\
We consider the following model: (1 @ z2 @ ©3);, = T1;@2;73%
'r:ﬂml@%"@md-kL X e R™M*Xnd
—_— N~~~
signal noise
.. d
where 8 >0, |lz;|| =1, X;,...5, ~N(0,1) ii.d. and n = Zi:l n;.
|\ J

> |s it possible to recover the signal in theory? for which critical value of 37

> What alignment (x;,u;) between the signal and an estimator u;(T)

2

> Is there an algorithm that can recover the signal in polynomial time?
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Related Works: Symmetric Case

Introduced initially by (Montanari & Richard, 2014)
1
Y = pz® + TWe RN xN

where ||z|| = 1 and W has random Gaussian entries and is symmetric. This is a
natural extension of the classical spiked matrix model Y = fza | + ﬁW

Impossible Simple

NP-hard

Statistical  Algorithmic
threshold threshold

B.=0(1) B,=O(NT)

Other works in the literature include: (Montanari et al., 2015), (Hopkins et al.,
2020), (Kim et al., 2017), (Ben Arous et al., 2019), (Jagannath et al, 2020),

(Perry et al., 2020), (Ros et al., 2020), (Goulart et al., 2022).

Of which Goulart et al. ""A random matrix perspective on random tensors",
JMLR 2022.
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Random Matrix Approach (Goulart et al., 2022)

The optimization problem of maximum likelihood estimator (MLE) for d = 3:

2
min ||Y—/\u®3H < max (Y, uQ@uQ®u)
A>0, lul|=1 F lull=1

The critical points satisfy (Lim, 2005):
Y(uu)= u <& Ywu=Au, |ul|=1

where (Y(u,u)), = E]ku]ukY”k et (Y(u)),; Zk uYijk. The MLE
& corresponds to the dominant eigenvector of Y( ) Y(@)z =Yz

Hence, the approach from (Goulart et al., 2021) consists in studying:

= Bz, u)zz " L u NxN
Y(u) = Bz, u) +\/NW( )ER

Local maximum

Impossible

V1)V I V) 70—,
D, b P

RMT threshold /vs'fﬂﬁs'fica' Algorithmic
8, = 0(1) threshold threshold

=0(1) . =OWN'T)
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Tensors Singular Values and Vectors

The optimization problem of MLE for d = 3:

min
A>0, flug =1

1T = At ® uz ® usl|% (T,u1 ® uz ® u3)

The critical points satisfy (Lim, 2005):
T(,u2,u3) = Aux, T(ur, -, u3z) = Auz, T(ur,uz,-) = Aug

where ||u;]| = 1 for all 4 € [3] and (T(-, u2,u3)); = Z].k uz;usk Ty -

P In contrast to the symmetric case, the choice of the associated contraction
matrix is not straightforward. For instance:

T(u3) =T(,

Objectives:

> Evaluate the asymptotic limits of A and (z;, @;) associated (a priori) to
the MLE when n; — co.

» Define a symmetric random matrix that is equivalent to T.

NYUAD - February 15th 2023
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Associated Random Matrix to T

[ Stein's Lemma. Let X ~ N(0,1), then E[X f(X)] = E[f"(X)].

3
Recall A = T(ul,u,g, ug) = ﬁ Z”k uliugjugkxijk + 8 Hi:1<mi,u¢>.

1 Ouyi U2 Ousy
E[)\ = NG ZE U2 U3k o +E |uiiusk om +E |uiiug; DXiyn
ijk -
—1
Ouq
8§(J§k 1 01y xny T(u3) T(u2) u2ju3k€;:;
X, | = _\/_ﬁ T(u3)T  Opgxng T(ui) | = Al U U3ge’
ag(u_;k T(u2)T  T(u1)T  Onpgxng urugje,’
)

P3(T,u1,u2,u3)

The resolvent matrix: R(z) = (®3(T,u1,u2,u3) — zI,) L.
When n; — oo, the non-vanishing terms involve the trace of R(z),

At %trR()\) = 8 J@sus)

3

=1
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Associated Random Matrix to T

9/34

Deciphering
Asymmetric Spiked

NYUAD - February 15th 2023 Abu Dhabi Stochastics Seminar

e ) Tensor Models via
For an order-d tensor the associated random matrix is ®4(T,u1,...,uq) Ra"‘#’;:;:’y'*‘""‘
MEA. Seddik
(1 Lxng X12 X13 . de eddi
12 2 2d
( )T Onz Xngz x23 o X
13)T 23\T 3d Asymmetric Spiked Tensor
Dy : (X7a17"'7ad) — (x ) (X ) Ongxng - X Model e
Related Works
. . . Random Matrix Approach
1d\T 2d\T 3d\T
(X2t (X2 (X5 Onyxng
. ii X1
with X* = X(ah ey @1, ATy A1, BTy e ad) € R™iXMi, Tensors Singular Values and
_ Y, Vectors
Ve ~N Random Matrix
Remark. (d — 1) is an eigenvalue of ®4(T,u1,...,uq) with Doiene Shectal orm
ul ui
a(Tout,.. uq) | 2| =(d—1)A
Uq %)
pe Tensor
. _ . Deflation
since T (ul’ e Ui—1, Ui+l - ’ud) - Au]' Orthogonalized Tensor
Deflation
rank(®4(T,u1,...,uq)) = E min | n;, E n;
J#i
. J



Spectral Measure of ©,4(T,uq,...,ug)

4 R
Stieltjes Transform. The Stieltjes transform of a probability measure v is
gu(z) = [ HA e\ Sw).

For S € Sym,, with }); its eigenvalues and denote its resolvent Rg(z) =
(S — zI,) 7!, the ESM of S and its associated Stieltjes transform are:
1w I 1 1
v = p D 0es() = D 5 = i Rs(), 2 €C\S(s)
i=1 i=1

. J

4 )
Definition 1. Let v by the probability measure with Stieltjes transform
g9(z) = Zj:l gi(z) verifying S[g(z)] > 0 for S[z] > 0, where g;(z) satisfies
97(2) = (9(2) + 2)gi(2) — i =0, for z ¢ S(v).

| J

'a A
Assumption 1. As n; — 0o with <—<“— — ¢; € (0,1), there exists a

~ Z‘] nJ A a.s a.s
sequence of critical points (X, @1,...,6g) s.t. A 253 N, [(z, a45)] =5 p;
with A ¢ S(v) and p; > 0.

| J

4 )
Theorem 1 (SGC'21). Under Assumption 1, the ESM of ®4(T, 41,...,4q)
converges weakly to v defined in Definition 1 (i.e. %tr R(z) 2% ¢(2)).

|\ J

NYUAD - February 15th 2023

Abu Dhabi Stochastics Seminar

10/34

Deciphering
Asymmetric Spiked
Tensor Models via

Random Matrix
Theory

MEA. Seddik

Asymmetric Spiked Tensor
Model

Related Works

Random Matrix Approach

Tensors Singular Values and
Vectors

Associated Random Matrix

Asymptotic Spectral Norm
and Alignments

Hotteling-type Tensor
Deflatio

Orthogonalized Tensor
Deflation



Spectral Measure of ©,4(T,uq,...,ug)

Repeat
> gi+ci/(gi—9—2)
> g g
Until convergence of g.
c c 3c
=1 2= 0371—1

Density

Figure: Density of the limiting spectral measure v(dz) = £ limc_,o S[g(z + i€)].
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Spectral Measure of ©,4(T,uq,...,ug)

e N

Corollary 1. When ¢; = % for all i € [d], the ESM of ®4(T, 1, ...,1q
d

converges to a semi-circle law v of support [—2\ / %, 24/ %} , where

4(d—1)
(d)_ d (4(d—1) 2>+ ()7—2(1-&-(1\/22_7(1
= 5@ —) d ) 9= 2(d—1)
| J
A4
0.4 00 - Empirical 0 —— Theo.
—— Theoretical 0.3 1 - 4\[
0.2 | 0.2 4 - == 2E[)]
0.1 , ,
1 1
0 — \ ! 1 1 01— T E— f
-2 —1 0 1 2 —2 0 2 4 6

Figure: Spectrum of ®3(T, w1, w2, ug) at initialization (left) and convergence (right) of
tensor power iteration applied on T. n1 = no = ng = 150 and 8 = 3.

T(-,u2,us3) T(uy, -, us) T(u1,u2,-)
U 4~ ——" ug e~ —— L g —
[|T(, w2, u3)|| (I T(w1, -, us3)|| (| T(w1,u2,-)||
Abu Dhabi Stochastics Seminar
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Asymptotic Spectral Norm and Alignments

3

T(z1, 62, 43) = Az, 41) =

A+ 920 + s(V)] (@1, a0) = B [ @i @)

13/34
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Stein i=2
4 A
Assumption 1. As n; — oo with f’”— — ¢; € (0,1), there exists a
.nj
J
sequence of critical points (5\, Ui,...,0q) S.t. Py (s, tq)) 25 Di
with X ¢ S(v) and p; > 0.

- J
4 A
Theorem 2 (SGC'21). For all d > 3, under Assumption 1, there exists 85 > 0

such that for all 8 > s
NEBN, @, a0 EB g0
where X satisfies f(A, 8) = 0 with
d
2
9; ()
F@B) =249 - B[ Ja2), i) =y/1- T2
Ci
i=1
for 8 € [0,8s], A is bounded and |(x;, @) 25 0.
| J
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Asymptotic Spectral Norm and Alignments

d=3 €1=0.1,6=0.3,c3=0.6
404 —* As=155 1o
— A"(B)
35+ 084
g?
=
2 S 0.6+
= 30+ 2
£ 3
5 Bs=1.055497 =04+
5’.}_2'5' : < I — 0 alignment
02~ . B;=1.055497 — {x1,u)?
2.0 | — (X, u2)?
— 2
15 —r—em¥ 00— (x3, u3)
v v v v v v v v v v v v v v v v v v
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
B B
d=4 ¢1=0.1,6=02,¢3=0.3,¢c,=04
404 —* A=166 1o+
— A%(B)
0.8+
£ 35+
.
2 S 06+
_E 3.0+ g !
kvl Bs=1.209745 2044 | —— 0 alignment
8 25+ < H — (X1, u1)?
2 I 2
0.2 © Bs=1.209745 (X2, U2}
20~ ! — (x3,u3)?
N ood — 1 — (x al?
g v T v T v T v T 7 g D v v v v v v
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
B B
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Cubic Tensors

g
Corollary 2 (SGC'21). If d = 3 with ¢; = L, then for all 5 > 22
3
L a.s. 52 \/§ (332*4)
AESA S o
v3y/(382-4)3 V3
92124+ —Y o 4\ 9p2 436+ —YV
(@, )| ==
v 623
|\
10+
— 0dlignment
08+ LH
£ - a1
_i go.s- L/as_i
S %0.4- | .
VE')L I ﬁs=‘T=1.154701

For hyper-cubic tensors of order d, we have

d71<d72)1—% d—2

d

NYUAD - February 15th 2023
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Spiked Matrix Model

X e R™ Xng

= T:,Bwla:;r+ T

Ford=3,n3 =1

'a )
Corollary 3 (SGC'21). If d = 3 with ¢ =cet cg =1 —c for c € [0,1], the
spiked tensor model becomes a spiked matrix model (i.e. c3 = 0).
B2(B2+41)—c(e=1)
(BA+c(c=1))(A2+1-c)

Let k(B,c) = 8 ,for B> Bs = 1/c(l—c)

@i, )| ==

X a.s.

A —

1_
g2 414 <L i€ {1,2}

C
gz

14 24/c(1—¢) et [(zs,a:)] =5 0.

_
k(B ci)

while for 8 € [0, 8s], A 255

\ J
d=2 a=c=1/5c=1-c
4.0-] 104
c T = A=vV1+2/c1-0) 08
£35d — ) £
= 30+ S 06+
E <
525 Be=lc-op 2044 — 0 alignment
<
& 20+ 0.2+ Bs=(c(1—c)M (x1, 11)?
- — (X2, U2)?
B e e SR Y0 R g S e N |
0 : 7 T %
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
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Decomposition Algorithms and Complexity

min [T —Au1 ®--- ® ugl|3 = NP-hard (Hillar et al., 2013)
A>0, Jlugf|l=1

> Tensor unfolding: M;(T) = Bz;y,| + ﬁ/\/tl(X) € Rnixnj?ﬂ "
» Using Corollary 3, we find 3, = (HZ m) e /A /Zi ng.

d—
» Coincides with O ( N" 2 | of (Ben Arous et al, 2021) for n; = N.

> Same threshold for tensor power iteration initialized with tensor unfolding
(Auddy et al., 2021).

10 -
'
08- t -
! c = = = Threshold s |
. . Tensor Unfolding ¢-trans |
~_ 064 . ==+ PIor AMP ¢-trans |
5 Impossible O Possible]in polynomial fime — wemm MLE - theory
g 04 o : e Tensor Unfolding - theory |
. - ®  Tensor Unfolding (TU) - simu. |
: o Power Iteration (PT) - simu. |
024 o(1) ®  PIwith TU init. - simu. }
\ on=) -
00 - PR |
0 1 2 4 5
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Generalization to Low-rank Spiked Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

NYUAD - February 15th 2023 Abu Dhabi Stochastics Seminar

19/34

Deciphering
Asymmetric Spiked
Tensor Models via

Random Matrix
Theory

MEA. Seddik

Introduction

Asymmetric Spiked Tensor
Model
Related Works

Random Matrix Approach

Analysis of the
Asymmetric Spiked
Tensor Model

Tensors Singular Values and
Vectors

Associated Random Matrix

Asymptotic Spectral Norm
and Alignments

Decomposition
Algorithms and
Complexity

Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor
Deflation

Orthogonalized Tensor
Deflation



Hotteling-type Tensor Deflation

s

We consider the following rank-2 order-3 spiked tensor model

2

1
T = Zﬂiwu ® ®2; ® x3; + TX € RPXPXP

i=1

where 3; > 0,

|Zmill =1, X;k ~N(0,1) i.i.d. and n = 3p. Assume

o = (x11,T12) = (T21,T22) = (31, x32) € [0,1]

s

|

Tensor Deflation. Compute 5\21112 ® 22 ® U3z as best rank-one approxi-
mation of T2 with

To=T1 — Al11 @ d21 @ U31
where Ajdi1; ® @g; ® @3, is a critical point of

. 2
argmin || T; — Ajug; ® uzs @ uss||w
Ai>0,[lumg|[=1

Such a critical point satisfy

Ti (o li2i, G3s) = Nty Ti (@ug, -, B30) = Niios Ty (@14, @i, -) = Az

J
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lllustration of Signal Recovery with Deflation

Alignments of u;

Alignments of ug

(z1,22) =0
| |

<:1:17 :1:2> =0.5

— (u1,®1)

=== (u1,®2)

T T T
5 p1=p5 20

u2,T1

o~ o~
~ ~—

U2, T2

— (u2, 1)
=== (u2,®2)

—d..----

T T

5 pi=p5 2
B2

Figure: Deflation on T1 = Z
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Associated Random Matrices

For both deflation steps:

since T;'s are low-rank perturbations of

T, — ®3(T;, @14, U2,%3;) — Stieltjes transform g(z)

LX.

' )
AssumpEion 2. Assume that as n — oo, there exists a sequence of critical
points (/\i7 U4, U2y, 'lAL3i) such that

>\/ 235 A |<ﬂmi> ajmj> i) Pij ‘(’a'm,l 3 ﬁm2>‘ 2} n
with ;> 24/2 and p;;,7 > 0.

- J
4 )
Theorem 3 (SGC'21). Under Assumption 2, the ESM of ®3(T;, @14, G, U3s)
converges to the semi-circle law v of compact support [72 %, 2\/2 ,

with Stieltjes transform
—3z+34/ 8 2
g(z) = —3, z2> 24/ =
4 3
(. J
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First Deflation Step

( 1)

Theorem 4 (SGD'22). Under Assumption 2, A1, p11 and pi2 satisfy

2
fo(A1) = Zi:125ipi’i
hg(M)prj =D, Biaijpd, for je[2]

where a;; = a if i # j and 1 otherwise, and denote f4(z) = z + g(z) and

hg(z) = —ﬁ.
|\ J
N 14
154 < X
1
M ! °
] p12
10 | 05 #==mmm--n Fomooos —
' — p12
: --= 1 =52
' —e-a=05
5 0 '
T T T T T T T T
0 5 10 15 0 5 10 15
B1 B1

Figure: Simulated versus asymptotic singular value and alignments corresponding to the
first deflation step. We considered 82 = 5, a = 0.5, p = 100 and varying 81 € [0, 15].
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Second Deflation Step

' )

Theorem 5 (SGD'22). Under Assumption 2, A1, p11 and pi2 satisfy

2

fa(A2) + Ain* = Zi:l ﬂipé’i

hg(A2)paj +AinPpij =D i Bicujp3, for je[2]
2

hg(A2)n + ag(A)n? = D7 Bip1ip;

where a;; = a if i # j and 1 otherwise, and denote f,(z) = z + g(2),
hg(z) = —ﬁ and g¢(z) =z + @.

& J
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Figure: Simulated versus asymptotic singular value and alignments corresponding to the
first deflation step. We considered 82 = 5, a = 0.5, p = 100 and varying 31 € [0, 15].
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Orthogonalized Tensor Deflation

We consider the following rank-2 order-3 spiked tensor model
’ 1
T, = E m1i®$27®m;3i+7X6R[)><[)><[)
vn
1

k3

where 31 2 0,

Tmill =1, Xij5 ~N(0,1) ii.d. and n = 3p. Assume

a = (T11,®12) = (@21, T22) = (T31,x32) € [0,1]

( 1)

Orthogonalized Deflation. Compute atin ® fGigs ® 32 as best rank-one
approximation of Ty with

To=Ti x1 (Ip — “/ﬁuﬂlTl) =Ti1 — 7011 @ T1(A11)
where v € [0,1] and Niti1; ® Go; ® sy is a critical point of

argmin || T; — Aju1; @ ua; ® ’ll,3iH%~

Ai>0, [lumil=1

Such a critical point satisfy

Ti (o lioi, G3s) = Ndns Ti (@ug, -, B30) = Niios Ty (@14, Ui, -) = Az

.

J
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Associated Random Matrix (Second Deflation Step)

Let kK = (’ﬁ,ll,ﬂlz)

1 0 X(t32) X(di22)
To—» M, = NG X(dz2) T 0 X(t12) — v&X(d11)
" [ X(d22) T X(a12) T = yAX(@11) T 0
4 A

Remark. If v =1 then & = 0.

A2(t11, @12) = To(d11, G22, U32)
= Ti (@11, U22,U32) — (W11, 811) T1(@11, 22, U32) =0
——

=1

which yields a semi-circle law as in Hotteling's deflation.

J
4 A
Assumption 3. Assume that as n — oo, there exists a sequence of critical
points (A2, @12, U22, U32) such that for m # 1
> a.s. N a.s. N a.s.
Ao = A2 (@2, x1i)| = 020 [(Um2, Tmi)| — p2:
A A a.s. ~ N a.s.
[(d11,@12)| == £ [(@m1, dm2)] —>n
with A2 > Ay and 6g;, p2;,m > 0.
(. J
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Associated Random Matrix (Second Deflation Step)

'a B
Theorem 6 (SMD’23). Under Assumption 3, the ESM of M., converges
weakly to a deterministic measure p having Stieltjes transform s(z) =
a(z) 4 2b(z) verifying S[s(z)] > 0 for J[z] > 0, where a(z) and b(z) satisfy,
for z ¢ Supp(u)

{[Qb(z) +2]a(z)+ 3 =0
(a(z) + z — 7b(2))b(z) + % =0

with 7 = yx2 — 1+ K(y — 1).

| J
1
. 00 Eigenvalues
Repeat 0.4 :\ — M(dﬂf) .
> a —1/(3(2b + 2) - = = Semi-circle
> b+ —1/(3(a+z— b))
Until convergence of a and b. 027 \\
1 :
pu(dz) = — lim S[s(z + te)] !
T e—0 0 — 1 ]

I
-2 -1 0 1 2
Figure: Histogram of the eigenvalues of M., and limiting measure p. We considered
p =200, 1 =20, B2 =15, a = 0.8, v = 0.85.
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Singular Value and Alignments (Second Deflation Step)
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- ylatrix
Theorem 6 (SMD’23). Under Assumption 3, A2, 02;, p2:, k and 7 satisfy
lddik
2 2 2
FaOr2) = THEg(A) = 29w2b(ha) = ) 7 Bibaie3, —vn Y . Bir1ie3,
2 2 2 ed Tensor
[fs(A2) — a(X2)]02; — vp1j |:%g(/\1) +26b(A2) | = Zi:l Bz‘%‘jpgi — P14 Zi:l 5“311'/73.;
2 2 pproac
(2 +200 = b w = (=) | Y7 Birird, - Bro(n) Aorosch
2 2 i
fs(x2) — A+ 7”2)17()\2)] P25 = Zi:l Bib2ip2iij — VK [Zi:l BiP1iP2i®ij — plgfng(kl):l
2 2
Xg 4 a(xg) + (1 — vr2)b(rg) — %g(kl)} n= 21:1 Bi02ip1ip2i — mzizl Bio2,p2; Values and
lom Matrix
where a;; = a if i # j and 1 otherwise, and denote fs(z) = z + s(z). tral Norm
J
4 )
Case 7 = 1. The above system reduces to
2 2
fo(A2) = Ei:21 Bib2ip3; ) )
hg(A2)02; — %92()\1)91]' = i Biciip3, — p1j Y i Bip1ips TG s
hg ()‘2)p2j = 22:2»:1 /Bi92ip2i04ij g:t;:g::alized Tensor
hg(M2)n =7 Bib2ipripai
since Kk =0
. J



Singular Value and Alignments (Second Deflation Step)
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Figure: B2 = 5, « = 0.5, p = 100, v = 0.8 and varying 31 € [0, 15].
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Alignments Varying

First mode alignments

T

0.8

0.6

0.4
— 021

— B2

0.2 --- 05, =0.994
-=-=-a=0.6

- - = 4" (022) = 0.63

0 0.5 1

Y

Figure: 81 = 10, B2 = 9, a = 0.6, p = 100, @ = 0.6 and varying v € [0, 1].
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Other modes alignments
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~
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Model Parameters Estimation

» Compute X1, A2 and 7 = (d21, t22) by orthogonalized deflation for v = 1.

> Solve the previous systems (for v = 1) in 31, B2, o and the alignments.

15 :
: emy==x
. y = P2
10 ! === p1=f
1 _5\1
_5\2
5 e ———— oY
—k— min{f1, B2}
0

0 2 4 6 8 10 12 14
B1

Figure: B2 = 5, @« = 0.5, p = 150 and v = 1 while varying 2. The curves are averaged
over 100 realizations of T.
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RTT-improved Deflation Algorithm

> Perform orthogonalized deflation with v = 1.

» Model estimation (31,32,07).

> Estimate optimal v* to maximize p22 (solve systems and update
v+ v —€fore>0).

> Perform orthogonalized deflation with ~*.

P> Re-estimate first component as best rank-one approximation of

To — min{f1, f2}05 ® 05 @ 3.

Orth. Deflation v =1

RTT-improved

0.5

e Y=<
— 1
— p12
— p22
P21

/

e Y==T
— p11
— P12
— p22
P21

o

Figure: 81 = 6, B2 = 5.7 and p = 150. The curves are obtained by averaging over 200

0 0.2
«

realizations of T.

|
P i
\
0.4
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Take Away Messages

» The RMT approach allows the study of asymmetric spiked tensor models.
» The obtained results characterize the performance of the MLE for 3 large
enough (i.e., 8 > Bc).

Local maximum

Impossible NP-hard Simple

/ // W//% B
RMT threshold /vs'fﬂﬁSﬁCd Algorithmic
8. = 0O(1) threshold fhreshold[ )

Be=0(1) B.=O(N'T)

Open questions:

> Still unclear how to characterize the phase transition of the MLE with the
RMT approach.
Is it possible to find a polynomial time algorithm that is consistent below
the computational threshold 5,7
Study of higher order statistics and fluctuations?
Proof of consistency of model estimation?

v

vyvyyvyy

Universality and generalization to other decomposition methods.

Thank you for your attention!
melaseddik.github.io

NYUAD - February 15th 2023 Abu Dhabi Stochastics Seminar

Study the existence and uniqueness of the solutions of the deflation cases.
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melaseddik.github.io
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