Deciphering Asymmetric Spiked Tensor Models via Random Matrix Theory

Abu Dhabi Stochastics Seminar

Mohamed EI Amine Seddik

melaseddik.github.io
Joint work with M. Guillaud, R. Couillet, A. Decurninge
M. Mahfoud \& M. Debbah

Technology Innovation Institute

New York University Abu Dhabi - February 15th 2023

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Outline

$2 / 34$

Introduction

Asymmetric Spiked Tensor Model
 Related Works
 Random Matrix Approach

Analysis of the Asymmetric Spiked Tensor Model

Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition Algorithms and Complexity

Generalization to Low-rank Spiked Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

Introduction: Asymmetric Spiked Tensor Model

Deciphering

 Asymmetric Spiked Tensor Models via Random Matrix Theory
MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

We consider the following model: $\left(x_{1} \otimes x_{2} \otimes x_{3}\right)_{i j k}=x_{1 i} x_{2 j} x_{3 k}$

$$
\mathbf{T}=\underbrace{\beta x_{1} \otimes \cdots \otimes x_{d}}_{\text {signal }}+\frac{1}{\sqrt{n}} \underbrace{\mathbf{X}}_{\text {noise }} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}
$$

where $\beta \geq 0,\left\|x_{i}\right\|=1, X_{i_{1} \ldots i_{d}} \sim \mathcal{N}(0,1)$ i.i.d. and $n=\sum_{i=1}^{d} n_{i}$.

- Is it possible to recover the signal in theory? for which critical value of β ?

Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

- What alignment $\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}\right\rangle$ between the signal and an estimator $\boldsymbol{u}_{i}(\mathbf{T})$?
- Is there an algorithm that can recover the signal in polynomial time?

Related Works: Symmetric Case

Introduced initially by (Montanari \& Richard, 2014)

$$
\mathbf{Y}=\beta \boldsymbol{x}^{\otimes d}+\frac{1}{\sqrt{N}} \mathbf{W} \in \mathbb{R}^{N \times \cdots \times N}
$$

where $\|\boldsymbol{x}\|=1$ and \mathbf{W} has random Gaussian entries and is symmetric. This is a natural extension of the classical spiked matrix model $Y=\beta x x^{\top}+\frac{1}{\sqrt{N}} W$.

Other works in the literature include: (Montanari et al., 2015), (Hopkins et al., 2020), (Kim et al., 2017), (Ben Arous et al., 2019), (Jagannath et al, 2020), (Perry et al., 2020), (Ros et al., 2020), (Goulart et al., 2022).

Of which Goulart et al. "A random matrix perspective on random tensors'", JMLR 2022.

Introduction

Asymmetric Spiked Tensor Model

Related Works

Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

Random Matrix Approach (Goulart et al., 2022)

The optimization problem of maximum likelihood estimator (MLE) for $d=3$:

$$
\min _{\lambda>0,\|\boldsymbol{u}\|=1}\left\|\mathbf{Y}-\lambda \boldsymbol{u}^{\otimes 3}\right\|_{F}^{2} \quad \Leftrightarrow \quad \max _{\|\boldsymbol{u}\|=1}\langle\mathbf{Y}, \boldsymbol{u} \otimes \boldsymbol{u} \otimes \boldsymbol{u}\rangle
$$

The critical points satisfy (Lim, 2005):

$$
\mathbf{Y}(\boldsymbol{u}, \boldsymbol{u})=\lambda \boldsymbol{u} \quad \Leftrightarrow \quad \mathbf{Y}(\boldsymbol{u}) \boldsymbol{u}=\lambda \boldsymbol{u}, \quad\|\boldsymbol{u}\|=1
$$

where $(\mathbf{Y}(\boldsymbol{u}, \boldsymbol{u}))_{i}=\sum_{j k} u_{j} u_{k} Y_{i j k}$ et $(\mathbf{Y}(\boldsymbol{u}))_{i j}=\sum_{k} u_{k} Y_{i j k}$. The MLE \hat{x} corresponds to the dominant eigenvector of $\mathbf{Y}(\hat{\boldsymbol{x}}): \mathbf{Y}(\hat{x}) \hat{x}=\|\mathbf{Y}\| \hat{x}$.

Hence, the approach from (Goulart et al., 2021) consists in studying:

$$
\mathbf{Y}(\boldsymbol{u})=\beta\langle\boldsymbol{x}, \boldsymbol{u}\rangle \boldsymbol{x} \boldsymbol{x}^{\top}+\frac{1}{\sqrt{N}} \mathbf{W}(\boldsymbol{u}) \in \mathbb{R}^{N \times N}
$$

Local maximum

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

Outline

Introduction

```
Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
```

Analysis of the Asymmetric Spiked Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

Tensors Singular Values and Vectors

The optimization problem of MLE for $d=3$:

$$
\left.\min _{\lambda>0,\left\|\boldsymbol{u}_{i}\right\|=1}\left\|\mathbf{T}-\lambda \boldsymbol{u}_{1} \otimes \boldsymbol{u}_{2} \otimes \boldsymbol{u}_{3}\right\|_{F}^{2} \quad \Leftrightarrow \quad \prod_{\prod^{3}}^{\max } \boldsymbol{u}_{i} \|=1 \mathrm{~T}, \boldsymbol{u}_{1} \otimes \boldsymbol{u}_{2} \otimes \boldsymbol{u}_{3}\right\rangle
$$

The critical points satisfy (Lim, 2005):

$$
\mathbf{T}\left(\cdot, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)=\lambda \boldsymbol{u}_{1}, \mathbf{T}\left(\boldsymbol{u}_{1}, \cdot, \boldsymbol{u}_{3}\right)=\lambda \boldsymbol{u}_{2}, \mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdot\right)=\lambda \boldsymbol{u}_{3}
$$

where $\left\|\boldsymbol{u}_{i}\right\|=1$ for all $i \in[3]$ and $\left(\mathbf{T}\left(\cdot, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)\right)_{i}=\sum_{j k} u_{2 j} u_{3 k} T_{i j k}$.

- In contrast to the symmetric case, the choice of the associated contraction matrix is not straightforward. For instance:

$$
\mathbf{T}\left(\boldsymbol{u}_{3}\right) \equiv \mathbf{T}\left(\cdot, \cdot, \boldsymbol{u}_{3}\right)=\beta\left\langle\boldsymbol{x}_{3}, \boldsymbol{u}_{3}\right\rangle \boldsymbol{x}_{1} \boldsymbol{x}_{2}^{\top}+\frac{1}{\sqrt{n}} \mathbf{X}\left(\cdot, \cdot,, \boldsymbol{u}_{3}\right) \in \mathbb{R}^{n_{1} \times n_{2}}
$$

Objectives:

- Evaluate the asymptotic limits of $\hat{\lambda}$ and $\left\langle\boldsymbol{x}_{i}, \hat{\boldsymbol{u}}_{i}\right\rangle$ associated (a priori) to the MLE when $n_{i} \rightarrow \infty$.
- Define a symmetric random matrix that is equivalent to \mathbf{T}.

Associated Random Matrix to T

$$
\lambda+\frac{1}{n} \operatorname{tr} \boldsymbol{R}(\lambda)=\beta \prod_{i=1}^{3}\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}\right\rangle
$$

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works

The resolvent matrix: $\boldsymbol{R}(z)=\left(\boldsymbol{\Phi}_{3}\left(\mathbf{T}, \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)-z \boldsymbol{I}_{n}\right)^{-1}$. When $n_{i} \rightarrow \infty$, the non-vanishing terms involve the trace of $\boldsymbol{R}(z)$,

Stein's Lemma. Let $X \sim \mathcal{N}(0,1)$, then $\mathbb{E}[X f(X)]=\mathbb{E}\left[f^{\prime}(X)\right]$.

Recall $\lambda=T\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)=\frac{1}{\sqrt{n}} \sum_{i j k} u_{1 i} u_{2 j} u_{3 k} X_{i j k}+\beta_{i} \boldsymbol{N}_{i=1}^{3}\left\langle\boldsymbol{x}_{i}, \boldsymbol{u}_{i}\right\rangle$.

$$
\mathbb{E}[\lambda]=\frac{1}{\sqrt{n}} \sum_{i j k} \mathbb{E}\left[u_{2 j} u_{3 k} \frac{\partial u_{1 i}}{\partial X_{i j k}}\right]+\mathbb{E}\left[u_{1 i} u_{3 k} \frac{\partial u_{2 j}}{\partial X_{i j k}}\right]+\mathbb{E}\left[u_{1 i} u_{2 j} \frac{\partial u_{3 k}}{\partial X_{i j k}}\right]+
$$

Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix

Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

Associated Random Matrix to T

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach

Analysis of the

Asymmetric Spiked
with $\mathbf{X}^{i j} \equiv \mathbf{X}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{i-1}, \cdot, \boldsymbol{a}_{i+1}, \ldots, \boldsymbol{a}_{j-1}, \cdot, \boldsymbol{a}_{j+1}, \ldots, \boldsymbol{a}_{d}\right) \in \mathbb{R}^{n_{i} \times n_{j}}$.

Remark. $(d-1) \lambda$ is an eigenvalue of $\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)$ with

$$
\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)\left[\begin{array}{c}
\boldsymbol{u}_{1} \\
\vdots \\
\boldsymbol{u}_{d}
\end{array}\right]=(d-1) \lambda\left[\begin{array}{c}
\boldsymbol{u}_{1} \\
\vdots \\
\boldsymbol{u}_{d}
\end{array}\right]
$$

since $\mathbf{T}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{j-1}, \cdot, \boldsymbol{u}_{j+1}, \ldots, \boldsymbol{u}_{d}\right)=\lambda \boldsymbol{u}_{j}$.

$$
\operatorname{rank}\left(\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)\right)=\sum_{i=1}^{d} \min \left(n_{i}, \sum_{j \neq i} n_{j}\right)
$$

Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Spectral Measure of $\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)$

$10 / 34$

Deciphering Asymmetric Spiked Tensor Models via Random Matrix Theory

MEA. Seddik
For $S \in \operatorname{Sym}_{n}$ with λ_{i} its eigenvalues and denote its resolvent $\boldsymbol{R}_{\boldsymbol{S}}(z)=$ $\left(S-z I_{n}\right)^{-1}$, the ESM of S and its associated Stieltjes transform are:

$$
\nu_{S}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}}, g_{\nu_{S}}(z)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_{i}-z}=\frac{1}{n} \operatorname{tr} \boldsymbol{R}_{S}(z), z \in \mathbb{C} \backslash \mathcal{S}\left(\nu_{S}\right)
$$

Definition 1. Let ν by the probability measure with Stieltjes transform $g(z)=\sum_{i=1}^{d} g_{i}(z)$ verifying $\Im[g(z)]>0$ for $\Im[z]>0$, where $g_{i}(z)$ satisfies $g_{i}^{2}(z)-(g(z)+z) g_{i}(z)-c_{i}=0$, for $z \notin \mathcal{S}(\nu)$.

Assumption 1. As $n_{i} \rightarrow \infty$ with $\frac{n_{i}}{\sum_{j} n_{j}} \rightarrow c_{i} \in(0,1)$, there exists a sequence of critical points $\left(\hat{\lambda}, \hat{\boldsymbol{u}}_{1}, \ldots, \hat{\boldsymbol{u}}_{d}\right)$ s.t. $\hat{\lambda} \xrightarrow{\text { a.s. }} \lambda,\left|\left\langle x_{i}, \hat{u}_{i}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{i}$ with $\lambda \notin \mathcal{S}(\nu)$ and $\rho_{i}>0$.

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix

 Asymptotic Spectral Norm and AlignmentsDecomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Theorem 1 (SGC'21). Under Assumption 1, the ESM of $\Phi_{d}\left(\mathbf{T}, \hat{\boldsymbol{u}}_{1}, \ldots, \hat{\boldsymbol{u}}_{d}\right)$ converges weakly to ν defined in Definition 1 (i.e. $\frac{1}{n} \operatorname{tr} \boldsymbol{R}(z) \xrightarrow{\text { a.s. }} g(z)$).

Spectral Measure of $\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)$

Repeat

$>g_{i} \leftarrow c_{i} /\left(g_{i}-g-z\right)$
$-g \leftarrow \sum_{i} g_{i}$
Until convergence of g.

$$
c_{1}=\frac{c}{4}, \quad c_{2}=\frac{c}{2}, \quad c_{3}=1-\frac{3 c}{4}
$$

Figure: Density of the limiting spectral measure $\nu(d x)=\frac{1}{\pi} \lim _{\epsilon \rightarrow 0} \Im[g(x+i \epsilon)]$.

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix

Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Spectral Measure of $\Phi_{d}\left(\mathbf{T}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right)$

Corollary 1. When $c_{i}=\frac{1}{d}$ for all $i \in[d]$, the ESM of $\Phi_{d}\left(\mathbf{T}, \hat{\boldsymbol{u}}_{1}, \ldots, \hat{\boldsymbol{u}}_{d}\right)$ converges to a semi-circle law ν of support $\left[-2 \sqrt{\frac{d-1}{d}}, 2 \sqrt{\frac{d-1}{d}}\right]$, where

$$
\nu(d x)=\frac{d}{2(d-1) \pi} \sqrt{\left(\frac{4(d-1)}{d}-x^{2}\right)^{+}}, g(z)=\frac{-z d+d \sqrt{z^{2}-\frac{4(d-1)}{d}}}{2(d-1)}
$$

Figure: Spectrum of $\Phi_{3}\left(\mathbf{T}, \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)$ at initialization (left) and convergence (right) of tensor power iteration applied on T. $n_{1}=n_{2}=n_{3}=150$ and $\beta=3$.

$$
u_{1} \leftarrow \frac{\mathbf{T}\left(\cdot, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)}{\left\|\mathbf{T}\left(\cdot, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)\right\|}, \quad \boldsymbol{u}_{2} \leftarrow \frac{\mathbf{T}\left(\boldsymbol{u}_{1}, \cdot, \boldsymbol{u}_{3}\right)}{\left\|\mathbf{T}\left(\boldsymbol{u}_{1}, \cdot, \boldsymbol{u}_{3}\right)\right\|}, \quad \boldsymbol{u}_{3} \leftarrow \frac{\mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdot\right)}{\left\|\mathbf{T}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdot\right)\right\|}
$$

Asymptotic Spectral Norm and Alignments

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments
such that for all $\beta>\beta_{s}$

$$
\hat{\lambda} \xrightarrow{\text { a.s. }} \lambda, \quad\left|\left\langle\boldsymbol{x}_{i}, \hat{u}_{i}\right\rangle\right| \xrightarrow{\text { a.s. }} q_{i}(\lambda)
$$

where λ satisfies $f(\lambda, \beta)=0$ with

$$
f(z, \beta)=z+g(z)-\beta \prod_{i=1}^{d} q_{i}(z), \quad q_{i}(z)=\sqrt{1-\frac{g_{i}^{2}(z)}{c_{i}}}
$$

for $\beta \in\left[0, \beta_{s}\right], \lambda$ is bounded and $\left|\left\langle\boldsymbol{x}_{i}, \hat{\boldsymbol{u}}_{i}\right\rangle\right| \xrightarrow{\text { a.s. }} 0$.

Asymptotic Spectral Norm and Alignments

Deciphering
Asymmetric Spiked
Tensor Models via
Random Matrix
Theory
MEA. Seddik

Introduction
Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

Cubic Tensors

Corollary 2 (SGC'21). If $d=3$ with $c_{i}=\frac{1}{3}$, then for all $\beta>\frac{2 \sqrt{3}}{3}$

$$
\left\{\begin{array}{l}
\hat{\lambda} \xrightarrow{\text { a.s. }} \sqrt{\frac{\beta^{2}}{2}+2+\frac{\sqrt{3} \sqrt{\left(3 \beta^{2}-4\right)^{3}}}{18 \beta}} \\
\left|\left\langle\boldsymbol{x}_{i}, \hat{\boldsymbol{u}}_{i}\right\rangle\right| \xrightarrow{\text { a.s. }} \frac{\sqrt{9 \beta^{2}-12+\frac{\sqrt{3} \sqrt{\left(3 \beta^{2}-4\right)^{3}}}{\beta}}+\sqrt{9 \beta^{2}+36+\frac{\sqrt{3} \sqrt{\left(3 \beta^{2}-4\right)^{3}}}{\beta}}}{6 \sqrt{2} \beta}
\end{array}\right.
$$

For hyper-cubic tensors of order d, we have

$$
\beta_{s}=\sqrt{\frac{d-1}{d}}\left(\frac{d-2}{d-1}\right)^{1-\frac{d}{2}}, \quad \lim _{\beta \rightarrow \beta_{s}} \rho_{i}(\beta)=\sqrt{\frac{d-2}{d-1}}
$$

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Spiked Matrix Model

$$
\text { For } d=3, n_{3}=1 \quad \Rightarrow \quad \boldsymbol{T}=\beta \boldsymbol{x}_{1} \boldsymbol{x}_{2}^{\top}+\frac{1}{\sqrt{n_{1}+n_{2}}} \boldsymbol{X} \in \mathbb{R}^{n_{1} \times n_{2}}
$$

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

NYUAD - February 15th 2023

Abu Dhabi Stochastics Seminar

Outline

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach

Analysis of the Asymmetric Spiked Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition Algorithms and Complexity

Generalization to Low-rank Spiked Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Decomposition Algorithms and Complexity

Deciphering

 Asymmetric Spiked Tensor Models via Random Matrix Theory$$
\min _{\lambda>0,\left\|\boldsymbol{u}_{i}\right\|=1}\left\|\mathbf{T}-\lambda \boldsymbol{u}_{1} \otimes \cdots \otimes \boldsymbol{u}_{d}\right\|_{F}^{2} \Rightarrow \text { NP-hard (Hillar et al., 2013) }
$$

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works

Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and Complexity

Generalization to Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Outline

$19 / 34$

Deciphering
Asymmetric Spiked Tensor Models via Random Matrix Theory

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach

Analysis of the Asymmetric Spiked Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition Algorithms and Complexity

Generalization to Low-rank Spiked Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

Hotteling-type Tensor Deflation

$20 / 34$

$$
\mathbf{T}_{1}=\sum_{i=1}^{2} \beta_{i} \boldsymbol{x}_{1 i} \otimes \boldsymbol{x}_{2 i} \otimes \boldsymbol{x}_{3 i}+\frac{1}{\sqrt{n}} \mathbf{X} \in \mathbb{R}^{p \times p \times p}
$$

where $\beta_{i} \geq 0,\left\|\boldsymbol{x}_{m i}\right\|=1, X_{i j k} \sim \mathcal{N}(0,1)$ i.i.d. and $n=3 p$. Assume

$$
\alpha \equiv\left\langle\boldsymbol{x}_{11}, \boldsymbol{x}_{12}\right\rangle=\left\langle\boldsymbol{x}_{21}, \boldsymbol{x}_{22}\right\rangle=\left\langle\boldsymbol{x}_{31}, \boldsymbol{x}_{32}\right\rangle \in[0,1]
$$

Tensor Deflation. Compute $\hat{\lambda}_{2} \hat{\boldsymbol{u}}_{12} \otimes \hat{\boldsymbol{u}}_{22} \otimes \hat{\boldsymbol{u}}_{32}$ as best rank-one approximation of \mathbf{T}_{2} with

$$
\mathbf{T}_{2}=\mathbf{T}_{1}-\hat{\lambda}_{1} \hat{\boldsymbol{u}}_{11} \otimes \hat{\boldsymbol{u}}_{21} \otimes \hat{\boldsymbol{u}}_{31}
$$

where $\hat{\lambda}_{i} \hat{\boldsymbol{u}}_{1 i} \otimes \hat{\boldsymbol{u}}_{2 i} \otimes \hat{\boldsymbol{u}}_{3 i}$ is a critical point of

$$
\underset{\lambda_{i}>0,\left\|\boldsymbol{u}_{m i}\right\|=1}{\arg \min }\left\|\mathbf{T}_{i}-\lambda_{i} \boldsymbol{u}_{1 i} \otimes \boldsymbol{u}_{2 i} \otimes \boldsymbol{u}_{3 i}\right\|_{F}^{2}
$$

Such a critical point satisfy
$\mathbf{T}_{i}\left(\cdot, \hat{\boldsymbol{u}}_{2 i}, \hat{\boldsymbol{u}}_{3 i}\right)=\hat{\lambda}_{i} \hat{\boldsymbol{u}}_{1 i} \quad \mathbf{T}_{i}\left(\hat{\boldsymbol{u}}_{1 i}, \cdot, \hat{\boldsymbol{u}}_{3 i}\right)=\hat{\lambda}_{i} \hat{\boldsymbol{u}}_{2 i} \quad \mathbf{T}_{i}\left(\hat{\boldsymbol{u}}_{1 i}, \hat{\boldsymbol{u}}_{2 i}, \cdot\right)=\hat{\lambda}_{i} \hat{\boldsymbol{u}}_{3 i}$

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

Illustration of Signal Recovery with Deflation

Figure: Deflation on $\mathbf{T}_{1}=\sum_{i=1}^{2} \beta_{i} \boldsymbol{x}_{i}^{\otimes 3}$ with $\boldsymbol{x}_{i}=\boldsymbol{e}_{i} \in \mathbb{R}^{p}$.

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Associated Random Matrices

For both deflation steps:

$$
\mathbf{T}_{i} \quad \rightarrow \quad \mathbf{\Phi}_{3}\left(\mathbf{T}_{i}, \hat{\boldsymbol{u}}_{1 i}, \hat{\boldsymbol{u}}_{2 i}, \hat{\boldsymbol{u}}_{3 i}\right) \quad \rightarrow \quad \text { Stieltjes transform } g(z)
$$

since \mathbf{T}_{i} 's are low-rank perturbations of $\frac{1}{\sqrt{n}} \mathbf{X}$.
Assumption 2. Assume that as $n \rightarrow \infty$, there exists a sequence of critical points ($\hat{\lambda}_{i}, \hat{\boldsymbol{u}}_{1 i}, \hat{\boldsymbol{u}}_{2 i}, \hat{\boldsymbol{u}}_{3 i}$) such that

$$
\hat{\lambda}_{i} \xrightarrow{\text { a.s. }} \lambda_{i} \quad\left|\left\langle\hat{\boldsymbol{u}}_{m i}, \boldsymbol{x}_{m j}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{i j} \quad\left|\left\langle\hat{\boldsymbol{u}}_{m 1}, \hat{\boldsymbol{u}}_{m 2}\right\rangle\right| \xrightarrow{\text { a.s. }} \eta
$$

with $\lambda_{i}>2 \sqrt{\frac{2}{3}}$ and $\rho_{i j}, \eta>0$.

Theorem 3 (SGC'21). Under Assumption 2, the ESM of $\boldsymbol{\Phi}_{3}\left(\mathbf{T}_{i}, \hat{\boldsymbol{u}}_{1 i}, \hat{\boldsymbol{u}}_{2 i}, \hat{\boldsymbol{u}}_{3 i}\right)$ converges to the semi-circle law ν of compact support $\left[-2 \sqrt{\frac{2}{3}}, 2 \sqrt{\frac{2}{3}}\right]$, with Stieltjes transform

$$
g(z)=\frac{-3 z+3 \sqrt{z^{2}-\frac{8}{3}}}{4}, \quad z>2 \sqrt{\frac{2}{3}}
$$

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor
Deflation

First Deflation Step

$23 / 34$

Theorem 4 (SGD'22). Under Assumption 2, λ_{1}, ρ_{11} and ρ_{12} satisfy

$$
\left\{\begin{array}{l}
f_{g}\left(\lambda_{1}\right)=\sum_{i=1}^{2} \beta_{i} \rho_{1 i}^{3} \\
h_{g}\left(\lambda_{1}\right) \rho_{1 j}=\sum_{i=1}^{2} \beta_{i} \alpha_{i j} \rho_{1 i}^{2} \quad \text { for } \quad j \in[2]
\end{array}\right.
$$

where $\alpha_{i j}=\alpha$ if $i \neq j$ and 1 otherwise, and denote $f_{g}(z)=z+g(z)$ and $h_{g}(z)=-\frac{1}{g(z)}$.

Figure: Simulated versus asymptotic singular value and alignments corresponding to the first deflation step. We considered $\beta_{2}=5, \alpha=0.5, p=100$ and varying $\beta_{1} \in[0,15]$.

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors

Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to Low-rank Spiked
Tensor Models

Hotteling-type Tensor

 DeflationOrthogonalized Tensor Deflation

Second Deflation Step

Deciphering

 Asymmetric Spiked Tensor Models via Random Matrix Theory$$
\left\{\begin{array}{l}
f_{g}\left(\lambda_{2}\right)+\lambda_{1} \eta^{3}=\sum_{i=1}^{2} \beta_{i} \rho_{2 i}^{3} \\
h_{g}\left(\lambda_{2}\right) \rho_{2 j}+\lambda_{1} \eta^{2} \rho_{1 j}=\sum_{i=1}^{2} \beta_{i} \alpha_{i j} \rho_{2 i}^{2} \quad \text { for } \quad j \in[2] \\
h_{g}\left(\lambda_{2}\right) \eta+q_{g}\left(\lambda_{1}\right) \eta^{2}=\sum_{i=1}^{2} \beta_{i} \rho_{1 i} \rho_{2 i}^{2}
\end{array}\right.
$$

where $\alpha_{i j}=\alpha$ if $i \neq j$ and 1 otherwise, and denote $f_{g}(z)=z+g(z)$, $h_{g}(z)=-\frac{1}{g(z)}$ and $q_{g}(z)=z+\frac{g(z)}{3}$.

Figure: Simulated versus asymptotic singular value and alignments corresponding to the first deflation step. We considered $\beta_{2}=5, \alpha=0.5, p=100$ and varying $\beta_{1} \in[0,15]$.

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach

Analysis of the

Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to Low-rank Spiked
Tensor Models

Hotteling-type Tensor

 DeflationOrthogonalized Tensor Deflation

Orthogonalized Tensor Deflation

$25 / 34$

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Orthogonalized Deflation. Compute $\hat{\lambda}_{2} \hat{\boldsymbol{u}}_{12} \otimes \hat{\boldsymbol{u}}_{22} \otimes \hat{\boldsymbol{u}}_{32}$ as best rank-one approximation of \mathbf{T}_{2} with

$$
\mathbf{T}_{2} \equiv \mathbf{T}_{1} \times_{1}\left(\boldsymbol{I}_{p}-\gamma \hat{\boldsymbol{u}}_{11} \hat{\boldsymbol{u}}_{11}^{\top}\right)=\mathbf{T}_{1}-\gamma \hat{\boldsymbol{u}}_{11} \otimes \mathbf{T}_{1}\left(\hat{\boldsymbol{u}}_{11}\right)
$$

where $\gamma \in[0,1]$ and $\hat{\lambda}_{i} \hat{\boldsymbol{u}}_{1 i} \otimes \hat{\boldsymbol{u}}_{2 i} \otimes \hat{\boldsymbol{u}}_{3 i}$ is a critical point of

$$
\underset{\lambda_{i}>0,\left\|\boldsymbol{u}_{m i}\right\|=1}{\arg \min }\left\|\mathbf{T}_{i}-\lambda_{i} \boldsymbol{u}_{1 i} \otimes \boldsymbol{u}_{2 i} \otimes \boldsymbol{u}_{3 i}\right\|_{F}^{2}
$$

Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Such a critical point satisfy
$\mathbf{T}_{i}\left(\cdot, \hat{\boldsymbol{u}}_{2 i}, \hat{\boldsymbol{u}}_{3 i}\right)=\hat{\lambda}_{i} \hat{\boldsymbol{u}}_{1 i} \quad \mathbf{T}_{i}\left(\hat{\boldsymbol{u}}_{1 i}, \cdot, \hat{\boldsymbol{u}}_{3 i}\right)=\hat{\lambda}_{i} \hat{\boldsymbol{u}}_{2 i} \quad \mathbf{T}_{i}\left(\hat{\boldsymbol{u}}_{1 i}, \hat{\boldsymbol{u}}_{2 i}, \cdot\right)=\hat{\lambda}_{i} \hat{\boldsymbol{u}}_{3 i}$

Associated Random Matrix (Second Deflation Step)

Let $\hat{\kappa}=\left\langle\hat{\boldsymbol{u}}_{11}, \hat{\boldsymbol{u}}_{12}\right\rangle$
$\mathbf{T}_{2} \rightarrow \boldsymbol{M}_{\gamma} \equiv \frac{1}{\sqrt{n}}\left[\begin{array}{ccc}0 & \mathbf{X}\left(\hat{\boldsymbol{u}}_{32}\right) & \mathbf{X}\left(\hat{\boldsymbol{u}}_{22}\right) \\ \mathbf{X}\left(\hat{\boldsymbol{u}}_{32}\right)^{\top} & 0 & \mathbf{X}\left(\hat{\boldsymbol{u}}_{12}\right)-\gamma \hat{\kappa} \mathbf{X}\left(\hat{\boldsymbol{u}}_{11}\right) \\ \mathbf{X}\left(\hat{\boldsymbol{u}}_{22}\right)^{\top} & \mathbf{X}\left(\hat{\boldsymbol{u}}_{12}\right)^{\top}-\gamma \hat{\kappa} \mathbf{X}\left(\hat{\boldsymbol{u}}_{11}\right)^{\top} & 0\end{array}\right]$

Remark. If $\gamma=1$ then $\hat{\kappa}=0$.

$$
\begin{aligned}
& \lambda_{2}\left\langle\hat{\boldsymbol{u}}_{11}, \hat{\boldsymbol{u}}_{12}\right\rangle=\mathbf{T}_{2}\left(\hat{\boldsymbol{u}}_{11}, \hat{\boldsymbol{u}}_{22}, \hat{\boldsymbol{u}}_{32}\right) \\
& =\mathbf{T}_{1}\left(\hat{\boldsymbol{u}}_{11}, \hat{\boldsymbol{u}}_{22}, \hat{\boldsymbol{u}}_{32}\right)-\underbrace{\left\langle\hat{\boldsymbol{u}}_{11}, \hat{\boldsymbol{u}}_{11}\right\rangle}_{=1} \mathbf{T}_{1}\left(\hat{\boldsymbol{u}}_{11}, \hat{\boldsymbol{u}}_{22}, \hat{\boldsymbol{u}}_{32}\right)=0
\end{aligned}
$$

which yields a semi-circle law as in Hotteling's deflation.

Assumption 3. Assume that as $n \rightarrow \infty$, there exists a sequence of critical points ($\hat{\lambda}_{2}, \hat{\boldsymbol{u}}_{12}, \hat{\boldsymbol{u}}_{22}, \hat{\boldsymbol{u}}_{32}$) such that for $m \neq 1$

$$
\begin{aligned}
& \hat{\lambda}_{2} \xrightarrow{\text { a.s. }} \lambda_{2} \quad\left|\left\langle\hat{\boldsymbol{u}}_{12}, \boldsymbol{x}_{1 i}\right\rangle\right| \xrightarrow{\text { a.s. }} \theta_{2 i} \quad\left|\left\langle\hat{\boldsymbol{u}}_{m 2}, \boldsymbol{x}_{m i}\right\rangle\right| \xrightarrow{\text { a.s. }} \rho_{2 i} \\
& \left|\left\langle\hat{\boldsymbol{u}}_{11}, \hat{\boldsymbol{u}}_{12}\right\rangle\right| \xrightarrow{\text { a.s. }} \kappa \quad\left|\left\langle\hat{\boldsymbol{u}}_{m 1}, \hat{\boldsymbol{u}}_{m 2}\right\rangle\right| \xrightarrow{\text { a.s. }} \eta
\end{aligned}
$$

with $\lambda_{2}>\lambda_{+}$and $\theta_{2 i}, \rho_{2 i}, \eta>0$.

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Associated Random Matrix (Second Deflation Step)

Theorem 6 (SMD'23). Under Assumption 3, the ESM of \boldsymbol{M}_{γ} converges weakly to a deterministic measure μ having Stieltjes transform $s(z)=$ $a(z)+2 b(z)$ verifying $\Im[s(z)]>0$ for $\Im[z]>0$, where $a(z)$ and $b(z)$ satisfy, for $z \notin \operatorname{Supp}(\mu)$

$$
\left\{\begin{array}{l}
{[2 b(z)+z] a(z)+\frac{1}{3}=0} \\
(a(z)+z-\tau b(z)) b(z)+\frac{1}{3}=0
\end{array}\right.
$$

with $\tau=\gamma \kappa^{2}-1+\kappa(\gamma-1)$.

$$
\mu(d x)=\frac{1}{\pi} \lim _{\epsilon \rightarrow 0} \Im[s(x+i \epsilon)]
$$

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Figure: Histogram of the eigenvalues of \boldsymbol{M}_{γ} and limiting measure μ. We considered $p=200, \beta_{1}=20, \beta_{2}=15, \alpha=0.8, \gamma=0.85$.

Singular Value and Alignments (Second Deflation Step)

Theorem 6 (SMD'23). Under Assumption 3, $\lambda_{2}, \theta_{2 i}, \rho_{2 i}, \kappa$ and η satisfy

$$
\left\{\begin{array}{l}
f_{S}\left(\lambda_{2}\right)-\frac{\gamma \kappa \eta^{2}}{3} g\left(\lambda_{1}\right)-2 \gamma \kappa^{2} b\left(\lambda_{2}\right)=\sum_{i=1}^{2} \beta_{i} \theta_{2 i} \rho_{2 i}^{2}-\gamma \kappa \sum_{i=1}^{2} \beta_{i} \rho_{1 i} \rho_{2 i}^{2} \\
{\left[f_{S}\left(\lambda_{2}\right)-a\left(\lambda_{2}\right)\right] \theta_{2 j}-\gamma \rho_{1 j}\left[\frac{\eta^{2}}{3} g\left(\lambda_{1}\right)+2 \kappa b\left(\lambda_{2}\right)\right]=\sum_{i=1}^{2} \beta_{i} \alpha_{i j} \rho_{2 i}^{2}-\gamma \rho_{1 j} \sum_{i=1}^{2} \beta_{i} \rho_{1 i} \rho_{2 i}^{2}} \\
{\left[\lambda_{2}+2(1-\gamma) b\left(\lambda_{2}\right)\right] \kappa=(1-\gamma)\left[\sum_{i=1}^{2} \beta_{i} \rho_{1 i} \rho_{2 i}^{2}-\frac{\eta^{2}}{3} g\left(\lambda_{1}\right)\right]} \\
{\left[f_{\mathcal{S}}\left(\lambda_{2}\right)-\left(1+\gamma \kappa^{2}\right) b\left(\lambda_{2}\right)\right] \rho_{2 j}=\sum_{i=1}^{2} \beta_{i} \theta_{2 i} \rho_{2 i} \alpha_{i j}-\gamma \kappa\left[\sum_{i=1}^{2} \beta_{i} \rho_{1 i} \rho_{2 i} \alpha_{i j}-\frac{\rho_{1 j} \eta}{3} g\left(\lambda_{1}\right)\right]} \\
{\left[\lambda_{2}+a\left(\lambda_{2}\right)+\left(1-\gamma \kappa^{2}\right) b\left(\lambda_{2}\right)-\frac{\gamma \kappa}{3} g\left(\lambda_{1}\right)\right] \eta=\sum_{i=1}^{2} \beta_{i} \theta_{2 i} \rho_{1 i} \rho_{2 i}-\gamma \kappa \sum_{i=1}^{2} \beta_{i} \rho_{1 i}^{2} \rho_{2 i}}
\end{array}\right.
$$

where $\alpha_{i j}=\alpha$ if $i \neq j$ and 1 otherwise, and denote $f_{s}(z)=z+s(z)$.

Decomposition
Case $\gamma=1$. The above system reduces to

$$
\left\{\begin{array}{l}
f_{g}\left(\lambda_{2}\right)=\sum_{i=1}^{2} \beta_{i} \theta_{2 i} \rho_{2 i}^{2} \\
h_{g}\left(\lambda_{2}\right) \theta_{2 j}-\frac{\eta^{2}}{3} g\left(\lambda_{1}\right) \rho_{1 j}=\sum_{i=1}^{2} \beta_{i} \alpha_{i j} \rho_{2 i}^{2}-\rho_{1 j} \sum_{i=1}^{2} \beta_{i} \rho_{1 i} \rho_{2 i}^{2} \\
h_{g}\left(\lambda_{2}\right) \rho_{2 j}=\sum_{i=1}^{2} \beta_{i} \theta_{2 i} \rho_{2 i} \alpha_{i j} \\
h_{g}\left(\lambda_{2}\right) \eta=\sum_{i=1}^{2} \beta_{i} \theta_{2 i} \rho_{1 i} \rho_{2 i}
\end{array}\right.
$$

since $\kappa=0$.

Singular Value and Alignments (Second Deflation Step)

Figure: $\beta_{2}=5, \alpha=0.5, p=100, \gamma=0.8$ and varying $\beta_{1} \in[0,15]$.

Alignments Varying γ

$30 / 34$

Deciphering Asymmetric Spiked Tensor Models via Random Matrix Theory

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Figure: $\beta_{1}=10, \beta_{2}=9, \alpha=0.6, p=100, \alpha=0.6$ and varying $\gamma \in[0,1]$.

Model Parameters Estimation

$31 / 34$

Deciphering

Asymmetric Spiked Tensor Models via Random Matrix Theory

MEA. Seddik

Figure: $\beta_{2}=5, \alpha=0.5, p=150$ and $\gamma=1$ while varying β_{2}. The curves are averaged over 100 realizations of \mathbf{T}_{1}.

$$
\begin{aligned}
=- & y=x \\
=- & y=\beta_{2} \\
=-= & \beta_{1}=\beta_{2} \\
& \hat{\lambda}_{1} \\
= & \hat{\lambda}_{2} \\
= & \max \left\{\hat{\beta}_{1}, \hat{\beta}_{2}\right\} \\
* & \min \left\{\hat{\beta}_{1}, \hat{\beta}_{2}\right\}
\end{aligned}
$$

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

RTT-improved Deflation Algorithm

- Perform orthogonalized deflation with $\gamma=1$.
- Model estimation ($\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\alpha}$).
- Estimate optimal γ^{*} to maximize ρ_{22} (solve systems and update $\gamma \leftarrow \gamma-\epsilon$ for $\epsilon>0$).
- Perform orthogonalized deflation with γ^{*}.
- Re-estimate first component as best rank-one approximation of $\mathbf{T}_{2}-\min \left\{\hat{\beta}_{1}, \hat{\beta}_{2}\right\} \hat{u}_{2}^{*} \otimes \hat{v}_{2}^{*} \otimes \hat{w}_{2}^{*}$.

Figure: $\beta_{1}=6, \beta_{2}=5.7$ and $p=150$. The curves are obtained by averaging over 200 realizations of \mathbf{T}_{1}.

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

Take Away Messages

- The RMT approach allows the study of asymmetric spiked tensor models.
- The obtained results characterize the performance of the MLE for β large enough (i.e., $\beta \geq \beta_{c}$).

Local maximum

Open questions:

- Still unclear how to characterize the phase transition of the MLE with the RMT approach.
- Is it possible to find a polynomial time algorithm that is consistent below the computational threshold β_{a} ?
- Study of higher order statistics and fluctuations?
- Proof of consistency of model estimation?
- Study the existence and uniqueness of the solutions of the deflation cases.
- Universality and generalization to other decomposition methods.

> Thank you for your attention!
> melaseddik.github.io

Introduction

Asymmetric Spiked Tensor Model

Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation

References

$34 / 34$
Deciphering Asymmetric Spiked Tensor Models via Random Matrix Theory

MEA. Seddik

Introduction

Asymmetric Spiked Tensor Model
Related Works
Random Matrix Approach
Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and Vectors
Associated Random Matrix
Asymptotic Spectral Norm and Alignments

Decomposition
Algorithms and
Complexity
Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor Deflation
Orthogonalized Tensor Deflation Accuracy of Hotelling-Type Tensor Deflation: A Random Tensor Analysis". In: arXiv preprint arXiv:2211.09004 (2022)
Mohamed El Amine Seddik, Mohammed Mahfoud, and Merouane Debbah. "Optimizing Orthogonalized Tensor Deflation via Random Tensor Theory". In: arXiv preprint arXiv:2302.05798 (2023)

