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Abstract

Context:
I Study of large Gram matrices of concentrated data.

Motivation:
I Gram matrices are at the core of various ML algorithms.
I RMT predicts their performances under Gaussian assumptions on the data.
I BUT Real data are unlikely close to Gaussian vectors.

Results:
I GAN data (≈ Real data) fall within the class of Concentrated vectors.
I Universality result:

Only first and second order statistics of Concentrated data matter
to describe the behavior of Gram matrices.
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Notion of Concentrated Vectors

Definition (Concentrated Vectors)
Given a normed space (E , ‖ · ‖E ) and q ∈ R, a random vector Z ∈ E is q-exponentially
concentrated if for any 1-Lipschitz1 function F : E → R, there exists C , c > 0 such
that

∀t > 0, P {|F(Z)− EF(Z)| ≥ t} ≤ Ce−(t/c)q denoted−−−−−→ Z ∈ Eq(c)

If c independent of dim(E), we denote Z ∈ Eq(1)

Concentrated vectors enjoy:

(P1) If X ∼ N (0, Ip) then X ∈ E2(1)
“Gaussian vectors are concentrated vectors”

(P2) If X ∈ Eq(1) and G is a λG-Lipschitz map, then G(X) ∈ Eq(λG)
“Concentrated vectors are stable through Lipschitz maps”

1Reminder: F : E → F is λF -Lipschitz if ∀(x, y) ∈ E2 : ‖F(x)− F(y)‖F ≤ λF ‖x − y‖E .
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Why Concentrated Vectors?

Figure: Images artificially generated using the BigGAN model [Brock et al, ICLR’19].

Real Data ≈ GAN Data = FL ◦ FL−1 ◦ · · · ◦ F1︸ ︷︷ ︸
G

(Gaussian)

where the Fi ’s correspond to Fully Connected layers, Convolutional layers, Sub-sampling,
Pooling and activation functions, residual connections or Batch Normalisation.

⇒ The Fi ’s are essentially Lipschitz operations.
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Why Concentrated Vectors?

I Fully Connected Layers and Convolutional Layers are affine operations:

Fi (x) = W ix + bi ,

and ‖Fi‖lip = supu 6=0
‖W iu‖p
‖u‖p , for any p-norm.

I Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect
to any p-norm (e.g., ReLU and Max-pooling).

I Residual Connections: Fi (x) = x + F (`)
i ◦ · · · ◦ F

(1)
i (x)

where the F (j)
i ’s are Lipschitz operations, thus Fi is a Lipschitz operation with

Lipschitz constant bounded by 1 +
∏`

j=1 ‖F
(j)
i ‖lip .

I . . .

By:
(P1) If X ∼ N (0, Ip) then X ∈ E2(1)
(P2) If X ∈ Eq(1) and G is a λG-Lipschitz map, then G(X) ∈ Eq(λG)

⇒ GAN data are concentrated vectors by design.

Remark: Still we need to control λG .
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Control of λG with Spectral Normalization
Let σ∗ > 0 and G be a neural network composed of N affine layers, each one of input
dimension di−1 and output dimension di for i ∈ [N], with 1-Lipschitz activation
functions. Consider the following dynamics with learning rate η:

W ←W − ηE , with E i,j ∼ N (0, 1)
W ←W −max(0, σ1(W )− σ∗) u1(W )v1(W )ᵀ.

The Lipschitz constant of G is bounded at convergence with high probability as:

λG ≤
N∏
i=1

(
ε+
√
σ2∗ + η2didi−1

)
.
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Figure: Parameters N = 1, d0 = d1 = 100 and η = 1/d0.
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Model & Assumptions

(A1) Data matrix (distributed in k classes C1, C2, . . . , Ck):

X =

x1, . . . , xn1︸ ︷︷ ︸
∈Eq1 (1)

, xn1+1, . . . , xn2︸ ︷︷ ︸
∈Eq2 (1)

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∈Eqk (1)

 ∈ Rp×n

Model statistics: µ` = Ex i∈C`
[x i ], C` = Ex i∈C`

[x ixᵀ
i ]

(A2) Growth rate assumptions: As p →∞,
1. p/n→ c ∈ (0,∞).
2. The number of classers k is bounded.
3. For any ` ∈ [k], ‖µ`‖ = O(√p).

Gram matrix and its resolvent:

G =
1
p

XᵀX, Q(z) = (G + zIn)−1

mL(z) =
1
n
tr (Q(−z)), UUᵀ =

−1
2πi

∮
γ

Q(−z)dz
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Main Result

Theorem
Under Assumptions (A1) and (A2), we have Q(z) ∈ Eq(p−

1
2 ). Furthermore,∥∥E[Q(z)]− Q̃(z)

∥∥ = O
(√

log p
p

)
where Q̃(z) =

1
z

Λ(z) +
1
p z

JΩ(z)Jᵀ

with Λ(z) = diag
{

1n`
1+δ`(z)

}k

`=1
and Ω(z) = diag{µᵀ

`
R̃(z)µ`}k`=1

R̃(z) =

(
1
k

k∑
`=1

C`
1 + δ`(z)

+ zIp

)−1
with δ(z) = [δ1(z), . . . , δk(z)] is the unique fixed point of the system of equations

δ`(z) = tr

(
C`

(
1
k

k∑
j=1

C j

1 + δj (z)
+ zIp

)−1)
for each ` ∈ [k].
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Main Result

Theorem
Under Assumptions (A1) and (A2), we have Q(z) ∈ Eq(p−

1
2 ). Furthermore,∥∥E[Q(z)]− Q̃(z)

∥∥ = O
(√
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)
where Q̃(z) =

1
z

Λ(z) +
1
p z

JΩ(z)Jᵀ

with Λ(z) = diag
{

1n`
1+δ`(z)

}k

`=1
and Ω(z) = diag{µ`ᵀR̃(z)µ`}k`=1

R̃(z) =

(
1
k

k∑
`=1

C`
1 + δ`(z)

+ zIp

)−1
with δ(z) = [δ1(z), . . . , δk(z)] is the unique fixed point of the system of equations

δ`(z) = tr

(
C`

(
1
k

k∑
j=1

C j

1 + δj (z)
+ zIp

)−1)
for each ` ∈ [k].

Key Observation: Only first and second order statistics matter!
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Application to CNN Representations of GAN Images

Generator

Discriminator

Lipschitz operation

Real / Fake

Representation Network

Lipschitz operation

Concentrated Vectors

I CNN representations correspond to the penultimate layer.
I Popular architectures considered in practice are: Resnet, VGG, Densenet.
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Application to CNN Representations of GAN Images
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Figure: k = 3 classes, n = 3000 images.
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Performance of a linear SVM classifier

GAN Images
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Performance of a linear SVM classifier

Real Images
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Take away messages

I Concentrated Vectors seem appropriate for realistic data modelling.

I Universality of linear classifiers regardless of the data distribution.

I RMT can anticipate the performances of standard classifiers for DL
representations of GAN images.

I Universality supports the Gaussianity assumption on the data representations as
considered in the literature, e.g., the FID metric

d2((µ,C), (µw ,Cw )) = ‖µ− µw‖2 + tr
(

C + Cw − 2(CCw )
1
2

)
.
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