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Introduction

In machine learning (ML),
I We are given some data

X = [x1, x2, . . . , xn] ∈ Rp×n

I We aim at performing different tasks
Regression, Classification, Clustering etc.

I At the heart of these tasks, we compute similarities
For instance: the inner product xᵀi xj

Quite naturally, the Gram matrix XᵀX appears in ML.

I How does it behave?
(Understating its behavior will let us anticipate the performances of a wide range
of standard ML models: e.g., Ridge-Regression, LS-SVM, Spectral Clustering ...)
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Behavior of the Gram Matrix for Gaussian Vectors

I Let us assume xi ∼ N (0, Ip)
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Figure: Eigenvalues distribution of 1
pX

ᵀX for n = p = 1000.
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The Marc̆enko–Pastur Law [Marc̆enko,Pastur’67]

Definition (Empirical Spectral Density)
The empirical spectral density (e.s.d.) µn of a Hermitian matrix An ∈ Rn×n is given by
µn = 1

n
∑n

i=1 δλi (An).

Theorem (The Marc̆enko–Pastur Law)
Let X ∈ Rp×n with i.i.d. random entries with zero mean, and variance 1.
When p, n→∞ with n/p → c ∈ (0,∞), the e.s.d. µn of 1

pX
ᵀX satisfies

µn
a.s.−−→ µc

where µc is a deterministic measure with continuous density function fc on the compact
support [λ−, λ+] = [(1−

√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x − λ−)(λ+ − x)
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Gaussian Mixture (Spiked Model)

I Let µ ∈ Rp such that ‖µ‖ = O(1)
I Consider

X = [x1, . . . , x n
2︸ ︷︷ ︸

∼N (+µ,Ip)

, x n
2 +1, . . . , xn︸ ︷︷ ︸
∼N (-µ,Ip)

]

I We can write

X = µ yᵀ + Z

where y ∈ {+1,−1}n represents the labels vector and Z has i.i.d. N (0, 1) entries.
I We thus have

1
p
XᵀX = ‖µ‖2 ȳ ȳᵀ︸ ︷︷ ︸

Information (low-rank)

+
1
p
ZᵀZ + ∗︸ ︷︷ ︸
Noise

where ȳ = y/√p
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Gaussian Mixture (Spiked Model)
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Figure: Eigenvalues distribution of 1
pX

ᵀX for n = p = 1000.
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Gaussian Mixture (Spiked Model)

Figure: Eigenvalues distribution of 1
pX

ᵀX along with its dominant eigenvector for n = p = 1000.
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Some RMT Results on Spiked Models

Theorem ([Baik, Silverstein’06], [Paul’07])
Let
I Z be with random i.i.d. entries with zero mean, variance 1 and E|Zij |4 <∞
I X = myᵀ + Z

Thus, when p, n→ with n/p → c,
I If ‖µ‖2 >

√
c

λ`

( 1
p
XᵀX

)
a.s.−−→ 1 + ‖µ‖2 + c

1 + ‖µ‖2

‖µ‖2
> (1 +

√
c)2

I For a, b ∈ Rp deterministic and ŷ the eigenvector corresponding to λmax
(
1
pX

ᵀX
)
,

aᵀŷ ŷᵀb −
1− c‖µ‖−4

1 + c‖µ‖−2
aᵀŷ ŷᵀb · 1‖µ‖2>√c

a.s.−−→ 0

In particular,

|ŷᵀy |2 a.s.−−→
1− c‖µ‖−4

1 + c‖µ‖−2
· 1‖µ‖2>√c .
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Some RMT Results on Spiked Models
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Figure: Simulated |ŷᵀy |2 and limit values, for p/n = 1/3, and varying ‖µ‖2.
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Notion of Concentrated Vectors

I Observation: RMT seems to predict ML performances in high-dimension based on
Gaussian assumptions on the data.

I BUT Real Data are unlikely close to Gaussian vectors!
I Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition
Given a normed space (E , ‖ · ‖E ) et q ∈ R, a random vector z ∈ E is q-exponentially
concentrated if for any 1-Lipschitz1 function F : Rp → R, there exists C , c > 0 such
that

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q denoted−−−−−→ z ∈ O(e−·

q
)

(P1) X ∼ N (0, Ip) is 2-exponentially concentrated.
(P2) If X ∈ O(e−·q ) and G is a ‖G‖lip-Lipschitz transformation, then

G(X) ∈ O
(
e−(·/‖G‖lip)q

)
.

“Concentrated vectors are stable through Lipschitz maps.”

1Reminder: F : E → F is ‖F‖lip -Lipschitz if ∀(x, y) ∈ E2 : ‖F(x)− F(y)‖F ≤ ‖F‖lip ‖x − y‖E .
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GAN Data : An Example of Concentrated Vectors

min
G

max
D

Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

Once the Generator is trained, we generate data as

Generated Image = G(Gaussian)
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GAN Data: An Example of Concentrated Vectors

Figure: Images artificially generated using the BigGAN model [Brock et al, ICLR’19].

GAN Data = F1 ◦ F2 ◦ · · · ◦ FN(Gaussian)

where the Fi ’s correspond to Fully Connected layers, Convolutional layers, Pooling and
activation functions, residual connections or Batch Normalisation.

⇒ The Fi ’s are essentially Lipschitz operations.
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GAN Data: An Example of Concentrated Vectors

I Fully Connected Layers and Convolutional Layers are affine operations:

Fi (x) = Wix + bi ,

and ‖Fi‖lip = supu 6=0
‖Wiu‖p
‖u‖p , for any p-norm.

I Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect
to any p-norm (e.g., ReLU and Max-pooling).

I Residual Connections: Fi (x) = x + F (1)
i ◦ · · · ◦ F

(`)
i (x)

where the F (j)
i ’s are Lipschitz operations, thus Fi is a Lipschitz operation with

Lipschitz constant bounded by 1 +
∏`

j=1 ‖F
(j)
i ‖lip .

I . . .
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Mixture of Concentrated Vectors

Consider data distributed in k classes C1, C2, . . . , Ck as

X = [x1, . . . , xn1︸ ︷︷ ︸
∈O(e−·q1 )

, xn1+1, . . . , xn2︸ ︷︷ ︸
∈O(e−·q2 )

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∈O(e−·qk )

] ∈ Rp×n

Denote

µ` = Exi∈C` [xi ], C` = Exi∈C` [xixᵀi ]

Assumption (Growth rate)
As p →∞,
1. p/n→ c ∈ (0,∞).
2. The number of classes k is bounded.
3. For any ` ∈ [k], ‖µ`‖ = O(√p).
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Behavior of the Gram Matrix for Concentrated Vectors

Let

G =
1
p
XᵀX =

1
p
JMᵀMJᵀ +

1
p
ZᵀZ + ∗+ op(1)

Denote by L the e.s.d. of G and U the matrix containing the top dominant eigenvectors
of G. Then

L =
1
n

n∑
i

δλi , mL(z) =
∫
λ

dL(λ)
λ− z

=
1
n
tr (Q(−z))

UUᵀ =
1
2πi

∮
γ

Q(−z)dz

⇒ Analyse the behavior of the resolvent Q(z) = (G + zIn)−1.
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Behavior of the Gram Matrix for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) ∈ O(e−(√p ·)q ) in (Rn×n, ‖ · ‖).
Furthermore,∥∥E[Q(z)]− Q̃(z)

∥∥ = O
(√

log p
p

)
where Q̃(z) =

1
z

Λ(z) +
1
p z

JΩ(z)Jᵀ

with Λ(z) = diag
{

1n`
1+δ`(z)

}k

`=1
and Ω(z) = diag{µᵀ

`
R̃(z)µ`}k`=1

R̃(z) =

(
1
k

k∑
`=1

C`
1 + δ`(z)

+ zIp

)−1
with δ(z) = [δ1(z), . . . , δk(z)] is the unique fixed point of the system of equations

δ`(z) = tr

(
C`

(
1
k

k∑
j=1

Cj

1 + δj (z)
+ zIp

)−1)
for each ` ∈ [k].
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Behavior of the Gram Matrix for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) ∈ O(e−(√p ·)q ) in (Rn×n, ‖ · ‖).
Furthermore,∥∥E[Q(z)]− Q̃(z)

∥∥ = O
(√

log p
p

)
where R̃(z) =

1
z

Λ(z) +
1
p z

JΩ(z)Jᵀ

with Λ(z) = diag
{

1n`
1+δ`(z)

}k

`=1
and Ω(z) = diag{µ`ᵀR̃(z)µ`}k`=1

R̃(z) =

(
1
k

k∑
`=1

C`
1 + δ`(z)

+ zIp

)−1
with δ(z) = [δ1(z), . . . , δk(z)] is the unique fixed point of the system of equations

δ`(z) = tr

(
C`

(
1
k

k∑
j=1

Cj

1 + δj (z)
+ zIp

)−1)
for each ` ∈ [k].

Key Observation: Only first and second order statistics matter!
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Kernel Spectral Clustering

Problem Statement
I Given data x1, . . . , xn ∈ Rp

I Objective: “cluster” in k similarity classes.
I Based on a kernel matrix

K =
{
f
( 1
p
‖xi − xj‖2

)}n

i,j=1

Intuition (from small dimensions)

K

I K mainly low rank with class information in eigenvectors.
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Small Dimension vs High Dimension!

K K
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Behavior of Kernel Matrices for Concentrated Vectors

I Key Observation: The between and within class vectors are “equidistant” in
high-dimension.

max
1≤i 6=j≤n

{∣∣∣ 1p ‖xi − xj‖2 − τ
∣∣∣} = O

(
log( p√

δ
)1/q

√p

)
→ 0

where τ = 2
p trC , and C =

∑k
`=1

n`
n C`.

I Taylor Expanding K entry-wise leads to

K ∝ JAJᵀ︸︷︷︸
Information

+ f ′(τ)ZᵀZ + ∗︸ ︷︷ ︸
Noise

where A ∝ f ′(τ)MᵀM + f ′′(τ)[ttᵀ + T],and

J = [j1, . . . , jk ], M = [m̄1, . . . , m̄k ] t =
{

trC̄`√p

}k

`=1

, T =
{

trC̄aC̄b
p

}k

a,b=1

Result: Only first and second order statistics matter!
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Application to CNN Representations of GAN Images

I CNN representations correspond to the one before last layer.
I Popular architectures considered in practice are: Resnet, VGG, Densenet.
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Application to CNN Representations of GAN Images

Generator

Discriminator

Lipschitz operation

Real / Fake

Representation Network

Lipschitz operation

Concentrated Vectors
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Perspectives

I Extensions to other ML methods (SVM, SSL ... etc).
I Considering ML algorithms with implicit solutions (last layer of a neural network).
I Definition of a criterion for choosing the best representation in a Transfer-Learning

framework.
I Use of the concentration of measure framework for improving GAN generation and

entropy.
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...

Thanks for your attention!
Web-page: http://melaseddik.github.io/
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