Kernel Random Matrices of Large Concentrated Data: the Example of GAN-Generated Images

(ENS weekly Golosino seminar)

Mohamed El Amine SEDDIK

CEA List, France CentraleSupélec, L2S, Université ParisSaclay, France University Paris-Saclay.

05 December 2019

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors Definition and Basic Properties GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors Definition and Basic Properties GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

Introduction

In machine learning (ML),

We are given some data

$$X = [x_1, x_2, \ldots, x_n] \in \mathbb{R}^{p \times n}$$

We aim at performing different tasks

Regression, Classification, Clustering etc.

At the heart of these tasks, we compute similarities

For instance: the inner product $x_i^{\mathsf{T}} x_i$

Quite naturally, the Gram matrix $X^{T}X$ appears in ML.

How does it behave?

(Understating its **behavior** will let us **anticipate the performances** of a wide range of standard ML models: e.g., Ridge-Regression, LS-SVM, Spectral Clustering ...)

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors Definition and Basic Properties GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

Behavior of the Gram Matrix for Gaussian Vectors

• Let us assume $x_i \sim \mathcal{N}(0, I_p)$

Figure: Eigenvalues distribution of $\frac{1}{p}X^{\mathsf{T}}X$ for n = p = 1000.

Definition (Empirical Spectral Density)

The empirical spectral density (e.s.d.) μ_n of a Hermitian matrix $A_n \in \mathbb{R}^{n \times n}$ is given by $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(A_n)}$.

Theorem (The Marčenko–Pastur Law)

Let $X \in \mathbb{R}^{p \times n}$ with i.i.d. random entries with zero mean, and variance 1. When $p, n \to \infty$ with $n/p \to c \in (0, \infty)$, the e.s.d. μ_n of $\frac{1}{p}X^TX$ satisfies

$$\mu_n \xrightarrow{a.s.} \mu_o$$

where μ_c is a deterministic measure with continuous density function f_c on the compact support $[\lambda^-, \lambda^+] = [(1 - \sqrt{c})^2, (1 + \sqrt{c})^2]$

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(x-\lambda^-)(\lambda^+-x)}$$

Gaussian Mixture (Spiked Model)

• Let $\mu \in \mathbb{R}^p$ such that $\|\mu\| = \mathcal{O}(1)$

Consider

$$X = [\underbrace{x_1, \dots, x_{\frac{n}{2}}}_{\sim \mathcal{N}(+\mu, \mathbf{I}_p)}, \underbrace{x_{\frac{n}{2}+1}, \dots, x_n}_{\sim \mathcal{N}(-\mu, \mathbf{I}_p)}]$$

We can write

$$X = \mu y^{\mathsf{T}} + Z$$

where $y \in \{+1, -1\}^n$ represents the labels vector and Z has i.i.d. $\mathcal{N}(0, 1)$ entries. We thus have

$$\frac{1}{p}X^{\mathsf{T}}X = \underbrace{\|\mu\|^2 \, \bar{y} \bar{y}^{\mathsf{T}}}_{\text{Information (low-rank)}} + \underbrace{\frac{1}{p} Z^{\mathsf{T}} Z + *}_{\text{Noise}} \text{ where } \bar{y} = y/\sqrt{p}$$

Figure: Eigenvalues distribution of $\frac{1}{p}X^{\mathsf{T}}X$ for n = p = 1000.

Figure: Eigenvalues distribution of $\frac{1}{p}X^{\mathsf{T}}X$ along with its dominant eigenvector for n = p = 1000.

Theorem ([Baik, Silverstein'06], [Paul'07])

Let

 \blacktriangleright Z be with random i.i.d. entries with zero mean, variance 1 and $\mathbb{E}|Z_{ij}|^4 < \infty$

$$\blacktriangleright X = my^{\intercal} + Z$$

Thus, when $p, n \rightarrow$ with $n/p \rightarrow c$,

è

• If $\|\mu\|^2 > \sqrt{c}$

$$\lambda_{\ell} \left(\frac{1}{p} X^{\mathsf{T}} X\right) \xrightarrow{a.s.} 1 + \|\mu\|^2 + c \frac{1 + \|\mu\|^2}{\|\mu\|^2} > (1 + \sqrt{c})^2$$

For a, $b \in \mathbb{R}^{p}$ deterministic and \hat{y} the eigenvector corresponding to $\lambda_{\max}\left(\frac{1}{p}X^{\intercal}X\right)$,

$$\mathbf{a}^{\mathsf{T}}\hat{\mathbf{y}}\hat{\mathbf{y}}^{\mathsf{T}}b - \frac{1 - c\|\boldsymbol{\mu}\|^{-4}}{1 + c\|\boldsymbol{\mu}\|^{-2}} \mathbf{a}^{\mathsf{T}}\hat{\mathbf{y}}\hat{\mathbf{y}}^{\mathsf{T}}b \cdot \mathbf{1}_{\|\boldsymbol{\mu}\|^{2} > \sqrt{c}} \xrightarrow{a.s.} \mathbf{0}$$

In particular,

$$|\hat{y}^{\mathsf{T}}y|^2 \xrightarrow{a.s.} \frac{1-c\|\mu\|^{-4}}{1+c\|\mu\|^{-2}} \cdot 1_{\|\mu\|^2 > \sqrt{c}}$$

Some RMT Results on Spiked Models

Figure: Simulated $|\hat{y}^{\mathsf{T}}y|^2$ and limit values, for p/n = 1/3, and varying $\|\mu\|^2$.

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors

Definition and Basic Properties GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors Definition and Basic Properties

GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances in high-dimension based on Gaussian assumptions on the data.
- **BUT** Real Data are unlikely close to Gaussian vectors!
- Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition

Given a normed space $(E, \|\cdot\|_E)$ et $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is q-exponentially **concentrated** if for any 1-Lipschitz¹ function $\mathcal{F} : \mathbb{R}^p \to \mathbb{R}$, there exists C, c > 0 such that

$$\mathbb{P}\left\{|\mathcal{F}(\mathsf{z}) - \mathbb{E}\mathcal{F}(\mathsf{z})| > t\right\} \leq C e^{-c t^{q}} \xrightarrow{\text{denoted}} \left| \mathsf{z} \in \mathcal{O}(e^{-.^{q}}) \right|$$

(P1) $X \sim \mathcal{N}(0, I_p)$ is 2-exponentially concentrated.

(P2) If $X \in \mathcal{O}(e^{-.^q})$ and \mathcal{G} is a $\|\mathcal{G}\|_{lip}$ -Lipschitz transformation, then

$$\mathcal{G}(\mathsf{X}) \in \mathcal{O}\left(e^{-\left(\cdot/\|\mathcal{G}\|_{lip}\right)^{q}}\right).$$

"Concentrated vectors are stable through Lipschitz maps."

¹Reminder: $\mathcal{F}: E \to F$ is $\|\mathcal{F}\|_{lip}$ -Lipschitz if $\forall (x, y) \in E^2 : \|\mathcal{F}(x) - \mathcal{F}(y)\|_F \le \|\mathcal{F}\|_{lip} \|x - y\|_E$.

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors Definition and Basic Properties GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

GAN Data : An Example of Concentrated Vectors

Once the Generator is trained, we generate data as

Generated Image = $\mathcal{G}(Gaussian)$

GAN Data: An Example of Concentrated Vectors

Figure: Images artificially generated using the BigGAN model [Brock et al, ICLR'19].

GAN Data = $\mathcal{F}_1 \circ \mathcal{F}_2 \circ \cdots \circ \mathcal{F}_N$ (**Gaussian**)

where the \mathcal{F}_i 's correspond to Fully Connected layers, Convolutional layers, Pooling and activation functions, residual connections or Batch Normalisation.

 \Rightarrow The \mathcal{F}_i 's are essentially *Lipschitz* operations.

GAN Data: An Example of Concentrated Vectors

Fully Connected Layers and Convolutional Layers are affine operations:

$$\mathcal{F}_i(x) = W_i x + b_i,$$

and $\|\mathcal{F}_i\|_{lip} = \sup_{u \neq 0} \frac{\|W_i u\|_p}{\|u\|_p}$, for any *p*-norm.

 Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect to any p-norm (e.g., ReLU and Max-pooling).

▶ Residual Connections: \(\mathcal{F}_i(x) = x + \mathcal{F}_i^{(1)} \cdots \cdots \cdots \mathcal{F}_i^{(\ell)}(x)\) where the \(\mathcal{F}_i^{(j)}\)'s are Lipschitz operations, thus \(\mathcal{F}_i\) is a Lipschitz operation with Lipschitz constant bounded by 1 + \(\prod \mathcal{L}_{i=1}^{\ell} \|\mathcal{F}_i^{(j)}\|_{lip}\).

▶ ...

Mixture of Concentrated Vectors

Consider data distributed in k classes C_1, C_2, \ldots, C_k as

$$X = [\underbrace{x_1, \dots, x_{n_1}}_{\in \mathcal{O}(e^{-.q_1})}, \underbrace{x_{n_1+1}, \dots, x_{n_2}}_{\in \mathcal{O}(e^{-.q_2})}, \dots, \underbrace{x_{n-n_k+1}, \dots, x_n}_{\in \mathcal{O}(e^{-.q_k})}] \in \mathbb{R}^{p \times n}$$

Denote

$$\mu_{\ell} = \mathbb{E}_{\mathsf{x}_i \in \mathcal{C}_{\ell}}[\mathsf{x}_i], \ \ C_{\ell} = \mathbb{E}_{\mathsf{x}_i \in \mathcal{C}_{\ell}}[\mathsf{x}_i \mathsf{x}_i^{\mathsf{T}}]$$

Assumption (Growth rate)

As $p
ightarrow \infty$,

- 1. $p/n \rightarrow c \in (0,\infty)$.
- 2. The number of classes k is bounded.
- 3. For any $\ell \in [k]$, $\|\mu_{\ell}\| = \mathcal{O}(\sqrt{p})$.

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors Definition and Basic Properties GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Let

$$G = \frac{1}{p}X^{\mathsf{T}}X = \frac{1}{p}JM^{\mathsf{T}}MJ^{\mathsf{T}} + \frac{1}{p}Z^{\mathsf{T}}Z + * + o_p(1)$$

Denote by L the e.s.d. of G and U the matrix containing the top dominant eigenvectors of G. Then

$$L = \frac{1}{n} \sum_{i}^{n} \delta_{\lambda_{i}}, \ m_{L}(z) = \int_{\lambda} \frac{dL(\lambda)}{\lambda - z} = \frac{1}{n} \operatorname{tr} \left(Q(-z) \right)$$
$$UU^{\mathsf{T}} = \frac{1}{2\pi i} \oint_{\gamma} Q(-z) dz$$

 \Rightarrow Analyse the behavior of the resolvent $Q(z) = (G + zI_n)^{-1}$.

Theorem

Under the assumptions above, we have $Q(z) \in O(e^{-(\sqrt{p} \cdot)^q})$ in $(\mathbb{R}^{n \times n}, \| \cdot \|)$. Furthermore,

$$\left\|\mathbb{E}[Q(z)] - \tilde{Q}(z)\right\| = \mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \text{ where } \tilde{Q}(z) = \frac{1}{z}\Lambda(z) + \frac{1}{p z}J\Omega(z)J^{\mathsf{T}}$$

with
$$\Lambda(z) = diag \left\{ rac{1_{n_\ell}}{1+\delta_\ell(z)}
ight\}_{\ell=1}^k$$
 and $\Omega(z) = diag \{ \mu_\ell^\mathsf{T} \tilde{R}(z) \mu_\ell \}_{\ell=1}^k$

$$ilde{\mathcal{R}}(z) = \left(rac{1}{k}\sum_{\ell=1}^k rac{\mathcal{C}_\ell}{1+\delta_\ell(z)} + z I_p
ight)^{-1}$$

with $\delta(z) = [\delta_1(z), \dots, \delta_k(z)]$ is the unique fixed point of the system of equations

$$\delta_\ell(z) = tr\left(C_\ell\left(rac{1}{k}\sum_{j=1}^k rac{C_j}{1+\delta_j(z)} + zl_p
ight)^{-1}
ight) ext{ for each } \ell \in [k].$$

Behavior of the Gram Matrix for Concentrated Vectors

Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}(e^{-(\sqrt{p} \cdot)^q})$ in $(\mathbb{R}^{n \times n}, \| \cdot \|)$. Furthermore,

$$\left\|\mathbb{E}[Q(z)] - \tilde{Q}(z)\right\| = \mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \text{ where } \tilde{R}(z) = \frac{1}{z}\Lambda(z) + \frac{1}{p z}J\Omega(z)J^{\mathsf{T}}$$

with
$$\Lambda(z) = diag \left\{ \frac{1_{n_{\ell}}}{1 + \delta_{\ell}(z)} \right\}_{\ell=1}^{k}$$
 and $\Omega(z) = diag \left\{ \mu_{\ell}^{\mathsf{T}} \tilde{R}(z) \mu_{\ell} \right\}_{\ell=1}^{k}$

$$ilde{R}(z) = \left(rac{1}{k}\sum_{\ell=1}^k rac{oldsymbol{C}_\ell}{1+\delta_\ell(z)} + z I_p
ight)^{-1}$$

with $\delta(z) = [\delta_1(z), \dots, \delta_k(z)]$ is the unique fixed point of the system of equations

$$\delta_{\ell}(z) = tr\left(C_{\ell}\left(\frac{1}{k}\sum_{j=1}^{k}\frac{C_{j}}{1+\delta_{j}(z)} + zI_{p}\right)^{-1}\right) \text{ for each } \ell \in [k].$$

Key Observation: Only first and second order statistics matter!

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors Definition and Basic Properties GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

Kernel Spectral Clustering

Problem Statement

- Given data $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" in *k* similarity classes.
- Based on a kernel matrix

$$\mathbf{K} = \left\{ f\left(\frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right) \right\}_{i,j=1}^n$$

Intuition (from small dimensions)

$$\mathbf{K} = \begin{pmatrix} \begin{array}{c|c} \gg 1 & \ll 1 & \ll 1 \\ \hline \ll 1 & \gg 1 & \ll 1 \\ \hline \ll 1 & \ll 1 & \gg 1 \end{pmatrix} \begin{pmatrix} \mathcal{C}_1 \\ \mathcal{C}_2 \\ \mathcal{C}_3 \end{pmatrix}$$

K mainly low rank with class information in eigenvectors.

Small Dimension vs High Dimension!

Behavior of Kernel Matrices for Concentrated Vectors

Key Observation: The between and within class vectors are "equidistant" in high-dimension.

$$\left| \max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} = \mathcal{O}\left(\frac{\log(\frac{p}{\sqrt{\delta}})^{1/q}}{\sqrt{p}} \right) \to 0$$

where
$$\tau = \frac{2}{p} \operatorname{tr} C$$
, and $C = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} C_{\ell}$.

► Taylor Expanding K entry-wise leads to

$$\mathbf{K} \propto \underbrace{\mathbf{JAJ}^{\mathsf{T}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \ast}_{Noise}$$

where $\mathbf{A} \propto f'(\tau)\mathbf{M}^{\mathsf{T}}\mathbf{M} + f''(\tau)[\mathbf{t}\mathbf{t}^{\mathsf{T}} + \mathbf{T}]$,and

$$\mathbf{J} = [\mathbf{j}_1, \dots, \mathbf{j}_k], \ \mathbf{M} = [\mathbf{\bar{m}}_1, \dots, \mathbf{\bar{m}}_k] \ \mathbf{t} = \left\{ \frac{\mathrm{tr} \mathbf{\bar{C}}_\ell}{\sqrt{p}} \right\}_{\ell=1}^k, \ \mathbf{T} = \left\{ \frac{\mathrm{tr} \mathbf{\bar{C}}_a \mathbf{\bar{C}}_b}{p} \right\}_{a,b=1}^k$$

Result: Only first and second order statistics matter!

Introduction

Behavior of the Gram Matrix for Gaussian Vectors

Notion of Concentrated Vectors Definition and Basic Properties GAN Data : An Example of Concentrated Vectors

Behavior of the Gram Matrix for Concentrated Vectors

Behavior of Kernel Matrices for Concentrated Vectors

- CNN representations correspond to the one before last layer.
- Popular architectures considered in practice are: Resnet, VGG, Densenet.

- Extensions to other ML methods (SVM, SSL ... etc).
- Considering ML algorithms with implicit solutions (last layer of a neural network).
- Definition of a criterion for choosing the best representation in a Transfer-Learning framework.
- Use of the concentration of measure framework for improving GAN generation and entropy.

Thanks for your attention! Web-page: http://melaseddik.github.io/