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Introduction

In machine learning (ML),

> We are given some data

X =[x,x2,...,xn] € RPX"

> We aim at performing different tasks
Regression, Classification, Clustering etc.
P At the heart of these tasks, we compute similarities
For instance: the inner product XI.TXJ‘
Quite naturally, the Gram matrix XTX appears in ML.

» How does it behave?

(Understating its behavior will let us anticipate the performances of a wide range
of standard ML models: e.g., Ridge-Regression, LS-SVM, Spectral Clustering ...)
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Behavior of the Gram Matrix for Gaussian Vectors

> Let us assume x; ~ N(0, I)

N —— Mercenko-Pastur Law
[0 Empirical eigenvalue distribution
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Figure: Eigenvalues distribution of }—)X"'X for n = p = 1000.
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The Maréenko—Pastur Law [Marcenko,Pastur’67]

Definition (Empirical Spectral Density)

The empirical spectral density (e.s.d.) p, of a Hermitian matrix A, € R"*" is given by
1 n

B =3 3200 Oxi(A)-

Theorem (The Marcenko—Pastur Law)

Let X € RPX" with i.i.d. random entries with zero mean, and variance 1.
When p,n — oo with n/p — ¢ € (0,0), the e.s.d. pn of %XTX satisfies

a.s.
n — fic

where pic is a deterministic measure with continuous density function f. on the compact

support [A~, A*] = [(1 - /c)?, (1 + v/<)?]

fe(x) =

© 2mex (x = A7) =)
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Gaussian Mixture (Spiked Model)

> Let u € RP such that ||u]| = O(1)
» Consider
X = [X17--»-,Xg»xg+17---7><n]

—— —
~N(+Hilp)  ~NCaslp)

> We can write
X=pyT+27

where y € {+1, —1}" represents the labels vector and Z has i.i.d. N'(0, 1) entries.
> We thus have

1 1
—XTX = el yyT +=ZTZ + % wherey=y/\/p
P —_—— p
Information (low-rank) NV_
olise

8/37



Gaussian Mixture (Spiked Model)

—— Mercenko-Pastur Law
771 Empirical eigenvalue distribution
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Figure: Eigenvalues distribution of }—)X"'X for n = p = 1000
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Gaussian Mixture (Spiked Model)

1 —— Mercenko-Pastur Law
[0 Empirical eigenvalue distribution
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Figure: Eigenvalues distribution of %XTX along with its dominant eigenvector for n = p = 1000.
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Some RMT Results on Spiked Models

Theorem ([Baik, Silverstein’06], [Paul’07])

Let
> Z be with random i.i.d. entries with zero mean, variance 1 and E|Z;|*
> X=myT+Z

Thus, when p,n — with n/p — c,

> If|ul? > Ve

< 00

1+ |l

e Ve

1 5.
M (GXTX) 225 14l + ¢
P

» For a, b € RP deterministic and y the eigenvector corresponding to Amax (%XTX),

1—cljp|~* N a.s.
atyyTh— —————aTy9PTh-1, » —0
1+ c|jpl| -2 [l ]2 >+/¢
In particular,
s 1=l
pTyl2 22 -1 2 .
‘y y| 1+ C||/.L||_2 [|||2>+c
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Some RMT Results on Spiked Models
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Figure: Simulated [§Ty|? and limit values, for p/n = 1/3, and varying ||u||>.
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Notion of Concentrated Vectors

» Observation: RMT seems to predict ML performances in high-dimension based on
Gaussian assumptions on the data.

» BUT Real Data are unlikely close to Gaussian vectors!

» Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition

Given a normed space (E, || - ||g) et ¢ € R, a random vector z € E is g-exponentially
concentrated if for any 1-Lipschitz! function F : R? — R, there exists C,c > 0 such
that

q denoted q
g

P{|F(z) —EF(z)| > t} < Ce "

[}

ze O(

(P1) X ~ N0, I,) is 2-exponentially concentrated.
(P2) If X € O(e= ") and G is a |G|l jip-Lipschitz transformation, then

g(X)eoO (ef('/”g”/rp)q) .

“Concentrated vectors are stable through Lipschitz maps.”

1Reminder: F : E — F is || F | ip-Lipschitz if ¥(x, y) € E?: |F(x) — FW)lf < 1 F i I1x = ylle-
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Notion of Concentrated Vectors

GAN Data : An Example of Concentrated Vectors
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GAN Data : An Example of Concentrated Vectors

Training set l/ Discriminator

[«
{}.ﬁﬁ{%

Generator - Fake image

mg!n max Eypx)llog D(x)] + E. p)[log(1 — D(G(2)))]

Once the Generator is trained, we generate data as

’ Generated Image = G(Gaussian) ‘
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GAN Data: An Example of Concentrated Vectors

Figure: Images artificially generated using the BigGAN model [Brock et al, ICLR'19].

GAN Data = Fj 0o Fp 0 -+ - o Fyy(Gaussian)

where the F;'s correspond to Fully Connected layers, Convolutional layers, Pooling and
activation functions, residual connections or Batch Normalisation.

= The F;'s are essentially Lipschitz operations. ‘
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GAN Data: An Example of Concentrated Vectors

» Fully Connected Layers and Convolutional Layers are affine operations:
Fi(x) = Wix + bj,

[[Wiullp
[Tullp

and || Fillip = sup,o , for any p-norm.

» Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect
to any p-norm (e.g., ReLU and Max-pooling).

» Residual Connections: Fj(x) = x + }‘l.(l) o---0 }.i(e)(x)
where the .7-',.(1)’5 are Lipschitz operations, thus F; is a Lipschitz operation with

Lipschitz constant bounded by 1 + Hle ||]-',.(j)||,,-p.
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Mixture of Concentrated Vectors

Consider data distributed in k classes C1,Ca,...,Ck as
X =[X1y ooy Xngy Xny41y -3 Xnpy ++ o5 Xn—ny+1s - - - » Xn] € RPXT
€0(e= ™) €0(e=?) €o(e=)
Denote

e =Eyee,xil, Co=Exec,[xix]

Assumption (Growth rate)

As p — o0,
1. p/n— c € (0,00).
2. The number of classes k is bounded.
3. For any £ € [K], Iluell = O(/B).
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Behavior of the Gram Matrix for Concentrated Vectors
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Behavior of the Gram Matrix for Concentrated Vectors

Let

1 1 1
G==XTX==JMMJT + =277 + %+ op(1)
P P P

Denote by L the e.s.d. of G and U the matrix containing the top dominant eigenvectors

of G. Then
Zéx,mL 2)= /M Lir(@(-2))

1
uuT = 5 Q(—2z)dz

= Analyse the behavior of the resolvent Q(z) = (G + zl,) ™.
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Behavior of the Gram Matrix for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) € O(e=(WP)) jn (R™" | - ||).
Furthermore,

[EIQ()] - &) = © <, / 'i”) where Q(2) = Z\(z) + ——J2(z)"

k
. . 1, . f
with N(z) = d'ag{uéi;(z) }e and Q(z) = diag{p] R(z)pe}s_,
=1

B -1
o (1 @)
R(z) = <k 2@t ”P)

=1

with §(z) = [61(2), - .., 0k(2)] is the unique fixed point of the system of equations

k -1
1 G
Se(z) = tr <ce (k § ng(z) +z/p> ) for each £ € [K].
j=1
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Behavior of the Gram Matrix for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) € O(e= (VP in (R || - ||).
Furthermore,
o log p = 1 1
|E[Q(2)] - Qz)|| = © = | where R(z) = SA2) + ()T

k
with N(z) = dlag{ 1""(2) } and Q(z) = diag{yﬂﬁ’(z)w}’,le
=1

B -1

y 1 C

Rz)= =y —L— +z

“ k;”ée(z)“"
with §(z) = [61(2), - . ., 0k(2)] is the unique fixed point of the system of equations
B ~1
1 G
Se(z)=tr | G T Z Té(z) + zlp for each ¢ € [Kk].

j=

’ Key Observation: Only first and second order statistics matter! ‘
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Behavior of Kernel Matrices for Concentrated Vectors
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Kernel Spectral Clustering

Problem Statement
> Given data x1,...,xn € RP

> Objective: “cluster” in k similarity classes.

1 > n
K= 3F (I =l
P ij=1

Intuition (from small dimensions)

» Based on a kernel matrix

» K mainly low rank with class information in eigenvectors.

26 /37



Small Dimension vs High Dimension!

- -
K= 102 K= IC2
- -
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Behavior of Kernel Matrices for Concentrated Vectors

> Key Observation: The between and within class vectors are “equidistant” in
high-dimension.

log(5=)"/
f=o(—Z—] o
NG

1 2
max 4| =l —xl? — 7
1<iZj<n U p

_ 2 _ k n
where 7 = ;trC, and C = § o1 TZCZ.
» Taylor Expanding K entry-wise leads to
Ko JAJT +f(7)ZTZ + %
JAJT (7)

Information Noise

where A « f/(T)MTM + f"/(7)[ttT + T],and

— k - k
_ _ trC trC,C
J[il....,jk],M—[ml,...,mk]t{ ‘} T{b}
VP =1 P a,b=1

‘ Result: Only first and second order statistics matter! ‘
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Application to CNN Representations of GAN Images
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Application to CNN Representations of GAN Images

ooled Fully-connected 1

p
feature maps pooled  featuremaps  foature maps
feature maps

Outputs

Input Convolutional Pooling 1 Convolutional

Pooling 2
layer 1 layer 2

» CNN representations correspond to the one before last layer.

» Popular architectures considered in practice are: Resnet, VGG, Densenet.
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Application to CNN Representations of GAN Images

Generator

Discriminator

Real / Fake

Lipschitz operation

Representation Network

% Concentrated Vectors

e
Lipschitz operation
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Application to CNN Representations of GAN Images

mwmmE_ NVD

mwmmE_ |eay
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Application to CNN Representations of GAN Images
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Application to CNN Representations of GAN Images
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Application to CNN Representations of GAN Images

GAN Images
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Perspectives

v

Extensions to other ML methods (SVM, SSL ... etc).
Considering ML algorithms with implicit solutions (last layer of a neural network).

Definition of a criterion for choosing the best representation in a Transfer-Learning
framework.

Use of the concentration of measure framework for improving GAN generation and
entropy.
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Thanks for your attention!
Web-page: http://melaseddik.github.io/
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