A Random Matrix Theory Analysis of Linear Generative Models

Mohamed EI Amine Seddik

Technology Innovation Institute
melaseddik.github.io

Khalifa University Mathematics Seminar

Abu Dhabi November $23^{\text {rd }} 2023$

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models
General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?
RMT Tools
Linear Generative Models
Simple Setting
Understanding
Generalization
Take Away Messages

Outline

Random Matrix TheoryWhy RMT?RMT Tools

Large Language Models

General Principle
Transformers
Motivation for a Theoretical Framework
RMT Tools
Linear Generative Models
Simple Setting

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

Take Away Messages

General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory
Why RMT?
RMT Tools
Linear Generative
Models
Simple Setting
Understanding
Generalization
Take Away Messages

Large Language Models

- LLMs became popular due to assistant chatbots (e.g., chatGPT).
- Rely on foundational models through self-supervised pre-training.

Given a corpus of vocabulary size k :

$$
\underset{\mathbf{W} \in \mathbb{R}^{d \times k}, \phi}{\arg \min }-\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_{i}^{\top} \log \sigma\left(\mathbf{W}^{\top} \phi\left(\mathbf{X}_{i}\right)\right) \quad \sigma(v)=\frac{\exp (v)}{\sum_{j=1}^{k} \exp \left(v_{j}\right)}
$$

- $\mathbf{X}_{i} \in \mathbb{R}^{d \times \ell_{i}}$ is a context sequence (of embeddings).
- $\boldsymbol{y}_{i} \in \mathbb{R}^{k}$ is a canonical vector encoding the next token.
$-\phi: \mathbb{R}^{d \times \ell_{i}} \rightarrow \mathbb{R}^{d}$ is a sequence encoder (transformer architecture).

General Principle

Transformers
Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?
RMT Tools

Linear Generative

Models
Simple Setting
Understanding
Generalization
Take Away Messages

NLP terminology:

- Tokenization: breaking down text into smaller units "tokens".
- Embedding: convert tokens into high-dimensional vectors.

"Mathematics is the giving of the same name to different things." HP.

[2118, 8991, 34805, 374, 279, 7231, 315, 279, 1890, 836, 311, 2204, 2574, 2029, 12478, 13] ${ }^{1}$

[^0]
Transformers: The Core Mechanism

Let $\mathbf{X}_{1}=\mathbf{X} \in \mathbb{R}^{d \times \ell}$ be an input sequence of ℓ embeddings of dimension d.

Mohamed Seddik The unmasked self-attention ${ }^{2}$ layer $g_{l}: \mathbf{X}_{l} \in \mathbb{R}^{d \times \ell} \mapsto \mathbf{X}_{l+1} \in \mathbb{R}^{d \times \ell}$ is:
$\mathbf{Y}_{l}=\underbrace{\mathbf{W}_{v} \mathbf{X}_{l}}_{\text {value }} \underbrace{\mathbf{A}_{l}}_{\text {attention }}+\mathbf{X}_{l} \quad$ with $\quad \mathbf{A}_{l}=\sigma(d^{-\frac{1}{2}} \underbrace{\left(\mathbf{W}_{k} \mathbf{X}_{l}\right)^{\top}}_{\text {key }} \underbrace{\mathbf{W}_{q} \mathbf{X}_{l}}_{\text {query }}) \in \mathbb{R}^{\ell \times \ell}$

$$
\mathbf{X}_{l+1}=\mathbf{W}_{2}^{\top} f\left(\mathbf{W}_{1}^{\top} \mathbf{Y}_{l}\right)+\mathbf{Y}_{l}
$$

A transformer is a composition of D layers and $\phi: \mathbb{R}^{d \times \ell} \rightarrow \mathbb{R}^{d}$ is:

$$
\phi(\mathbf{X})=\left[g_{D} \circ \cdots \circ g_{1}(\mathbf{X})\right]_{:, \ell}
$$

where $[\mathbf{M}]_{:, i}$ is the i-th column of \mathbf{M}.

Attention Is All You Need

[^1]
Motivation for a Theoretical Framework

Ultimately:

- Understand generalization: Express test loss in terms of hyperparameters.
- Uncertainty estimation: Control output model bias and variance.
- Predict scaling laws ${ }^{3}$ theoretically:

$$
\mathcal{L}(d, n)=\left[\left(\frac{d_{c}}{d}\right)^{\frac{\alpha_{d}}{\alpha_{n}}}+\frac{n_{c}}{n}\right]^{\alpha_{n}}
$$

where d is number of parameters and n is dataset size.

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?
RMT Tools
Linear Generative
Models
Simple Setting
Understanding
Generalization
Take Away Messages

[^2]
Outline

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

```
Large Language Models
    General Principle
    Transformers
    Motivation for a Theoretical Framework
```

Random Matrix TheoryWhy RMT?RMT Tools
Linear Generative ModelsSimple Setting
Take Away Messages

Large Language Models General Principle

Transformers
Motivation for a Theoretical Framework

Random Matrix Theory Why RMT?

RMT Tools
Linear Generative Models
Simple Setting
Understanding
Generalization
Take Away Messages

Why RMT?

- The problem involves high-dimensions: both d and n are large!
- Estimating test loss: a scalar quantity function of a random matrix (e.g. data matrix).

RMT has been applied to analyze a wide range of ML problems ${ }^{45}$:

- Kernel Methods.
- Large Neural Networks \& NTKs.
- Implicit Convex Optimization Problems.
- Unsupervised, Semi-supervised, Transfer and Multi-task Learning.

Random Matrix Theory and Machine Learning Tutorial
About Instructors contact

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models
General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?
RMT Tools
Linear Generative
Models
Simple Setting
Understanding Generalization

Take Away Messages

Random Matrix Theory and Machine Learning

in recerry years randam matrix theory (PMM) has carne to the forefiont of earrirg triecry as a twol to understand some of its most. impotant challenges. From generaizaton or deep leaming models to a preose
 anaysis ci

[^3]
Example: Large Sample Covariance Matrices

Let $\mathbf{X}=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right] \in \mathbb{R}^{d \times n} \quad$ with $\quad \boldsymbol{x}_{i} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.

- Classical statistics: when $n \rightarrow \infty$ and d is fixed, with maximum likelihood:

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \xrightarrow{\text { a.s. }} \boldsymbol{\Sigma}
$$

- RMT regime: both $d, n \rightarrow \infty$, curse of dimension occurs:

$$
\|\hat{\mathbf{C}}-\boldsymbol{\Sigma}\| \nrightarrow 0 \quad \text { as } \quad \frac{d}{n} \rightarrow \eta \in(0, \infty)
$$

- Marchenko-Pastur Law (1967): when $\boldsymbol{\Sigma}=\mathbf{I}_{d}$:

$f(x)=\frac{\sqrt{\left(\lambda_{+}-x\right)\left(x-\lambda_{-}\right)}}{2 \pi \eta x} \mathbf{1}_{x \in\left[\lambda_{-}, \lambda_{+}\right]} \quad$ with $\quad \lambda_{ \pm}=(1 \pm \sqrt{\eta})^{2}$

Mohamed Seddik

Large Language Models

General Principle

Transformers
Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?
RMT Tools

Linear Generative

Models
Simple Setting
Understanding Generalization

RMT Tools: Spectral Measure \& Stieltjes Transform

- Let $\mathbf{S} \in \mathbb{R}^{d \times d}$ some symmetric random matrix and λ_{i} its eigenvalues.
- Originally, RMT is about characterizing the spectrum of \mathbf{S} when $d \rightarrow \infty$.
- Under control of the moments of the entries of \mathbf{S} :

$$
\nu_{d}=\frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_{i}} \xrightarrow[d \rightarrow \infty]{w} \nu \quad \text { (in the weak sense) }
$$

where ν is a deterministic probability measure.

- Stieltjes Transform of a probability measure ν is:

$$
g_{\nu}(z)=\int \frac{d \nu(\lambda)}{\lambda-z} \quad z \in \mathbb{C} \backslash \operatorname{Supp}(\nu)
$$

- Equivalence: Let $\left(\nu_{d}\right)_{d \in \mathbb{N}}$ be a sequence of probability measures. Then:

$$
\nu_{d} \xrightarrow[d \rightarrow \infty]{w} \nu \quad \Leftrightarrow \quad g_{\nu_{d}}(z) \xrightarrow[d \rightarrow \infty]{\text { a.s. }} g_{\nu}(z) \quad \text { for all } \quad z \in \mathbb{C} \backslash \operatorname{Supp}(\nu)
$$

- Resolvent: Let $\mathbf{Q}(z)=\left(\mathbf{S}+z \mathbf{I}_{d}\right)^{-1}$, we have:

$$
g_{\nu_{d}}(z)=\frac{1}{d} \sum_{i=1}^{d} \frac{1}{\lambda_{i}-z}=\frac{1}{d} \operatorname{Tr} \mathbf{Q}(-z)
$$

- $g_{\nu_{d}}(z)$ is a linear form of $\mathbf{Q}(-z)$.

RMT Tools: Concentration \& Deterministic Equivalent

Concentration (Trace Lemma):

- $\boldsymbol{x} \in \mathbb{R}^{d}$ random with finite $2 m$ order moment and let $\boldsymbol{\Sigma}=\mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{\top}\right]$.
- $\mathbf{A} \in \mathbb{R}^{d \times d}$ independent of $\boldsymbol{x} \sim \mathcal{L}(\mathbf{0}, \boldsymbol{\Sigma})$ and $\|\mathbf{A}\|,\|\boldsymbol{\Sigma}\|<\infty$.

Then:

$$
\mathbb{E}_{\boldsymbol{x}}\left[\left|\frac{1}{d} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{x}-\frac{1}{d} \operatorname{Tr}(\boldsymbol{\Sigma} \mathbf{A})\right|^{m}\right] \leq C d^{-\frac{m}{2}} \Rightarrow \frac{1}{d} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{x} \xrightarrow{\text { a.s. }} \frac{1}{d} \operatorname{Tr}(\boldsymbol{\Sigma} \mathbf{A})
$$

Deterministic Equivalent:

- Definition: $\mathbf{Q} \leftrightarrow \overline{\mathbf{Q}}$ if $u(\mathbf{Q}-\overline{\mathbf{Q}}) \xrightarrow{\text { a.s. }} 0$ for any bounded linear form $u: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}$.

Let $\mathbf{X}=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right] \in \mathbb{R}^{d \times n}$ with $\boldsymbol{x}_{i} \sim \mathcal{L}(\mathbf{0}, \boldsymbol{\Sigma})$ and independent, then ${ }^{6}$:

$$
\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}+z \mathbf{I}_{d}\right)^{-1} \leftrightarrow \overline{\mathbf{Q}}(z)=\left(\frac{\boldsymbol{\Sigma}}{1+\delta(z)}+z \mathbf{I}_{d}\right)^{-1}
$$

where $\delta(z)=\frac{1}{n} \operatorname{Tr}(\Sigma \overline{\mathbf{Q}}(z))$.

- Limiting Stieltjes transform is given by $g_{\nu}(z)=\frac{1}{d} \operatorname{Tr} \overline{\mathbf{Q}}(-z)$.

[^4]
RMT Tools: Sketch of Proof

Let $\mathbf{Q}_{-i}=\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-\frac{1}{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}+z \mathbf{I}_{d}\right)^{-1}$ and $\overline{\mathbf{Q}}=\left(\mathbf{F}+z \mathbf{I}_{d}\right)^{-1}$, with:

$$
\mathbf{Q}=\mathbf{Q}_{-i}-\frac{\mathbf{Q}_{-i} \frac{1}{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \mathbf{Q}_{-i}}{1+\frac{1}{n} \boldsymbol{x}_{i}^{\top} \mathbf{Q}_{-i} \boldsymbol{x}_{i}} \quad \mathbf{Q} \boldsymbol{x}_{i}=\frac{\mathbf{Q}_{-i} \boldsymbol{x}_{i}}{1+\frac{1}{n} \boldsymbol{x}_{i}^{\top} \mathbf{Q}_{-i} \boldsymbol{x}_{i}}
$$

and $\mathbf{A}^{-1}-\mathbf{B}^{-1}=\mathbf{A}^{-1}(\mathbf{B}-\mathbf{A}) \mathbf{B}^{-1}$.
\mathbf{Q} concentrates around $\mathbb{E}[\mathbf{Q}]$ is the sense of deterministic equivalents ${ }^{7}$, and:

$$
\mathbb{E}[\mathbf{Q}-\overline{\mathbf{Q}}]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{Q}_{-i}\left(\frac{\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}}{1+\frac{1}{n} \boldsymbol{x}_{i}^{\top} \mathbf{Q}_{-i} \boldsymbol{x}_{i}}-\mathbf{F}\right) \overline{\mathbf{Q}}\right]+\mathcal{O}\left(n^{-1}\right)
$$

By trace lemma:

$$
\begin{aligned}
& \frac{1}{n} \boldsymbol{x}_{i}^{\top} \mathbf{Q}_{-i} \boldsymbol{x}_{i} \xrightarrow{\text { a.s. }} \frac{1}{n} \operatorname{Tr}\left(\boldsymbol{\Sigma} \mathbb{E}\left[\mathbf{Q}_{-i}\right]\right)=\frac{1}{n} \operatorname{Tr}(\boldsymbol{\Sigma} \overline{\mathbf{Q}})+\mathcal{O}\left(n^{-1}\right) \\
& \quad \Rightarrow \quad \overline{\mathbf{Q}}=\left(\frac{\boldsymbol{\Sigma}}{1+\delta}+z \mathbf{I}_{d}\right)^{-1} \quad \text { with } \quad \delta=\frac{1}{n} \operatorname{Tr}(\boldsymbol{\Sigma} \overline{\mathbf{Q}})
\end{aligned}
$$

- Remark: $\delta \rightarrow 0$ if $n \rightarrow \infty$ with d fixed.

[^5]A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models
General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?
RMT Tools
Linear Generative
Models
Simple Setting
Understanding
Generalization
Take Away Messages

Outline

```
Large Language Models
    General Principle
    Transformers
    Motivation for a Theoretical Framework
Random Matrix Theory
    Why RMT?
    RMT Tools
```

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models General Principle

Transformers
Motivation for a Theoretical Framework

Random Matrix Theory
Why RMT?
RMT Tools
Linear Generative Models
Simple Setting
Understanding
Generalization
Take Away Messages

Linear Generative Models
Simple Setting
Understanding Generalization

Take Away Messages

Statistical Model \& Linear Generative Model

Statistical Data Model:

- Denote k vocabulary size and ℓ context length (possible contexts $c=k^{\ell}$).
- n context representations $\boldsymbol{x}_{i}=\phi\left(\mathbf{X}_{i}\right) \in \mathbb{R}^{d}$ and next tokens $\boldsymbol{y}_{i} \in \mathbb{R}^{k}$:

$$
\begin{aligned}
& \boldsymbol{x}_{i}=\boldsymbol{z}_{a} \sim \mathcal{L}\left(\mathbf{0}, \mathbf{I}_{d}\right) \quad \text { with } \quad \mathbb{P}\left\{\boldsymbol{x}_{i}=\boldsymbol{z}_{a}\right\}=\alpha_{a} / c \quad a \in[c] \\
& \boldsymbol{y}_{i} \sim \mathbb{P}\left\{\cdot \mid \boldsymbol{x}_{i}=\boldsymbol{z}_{a}\right\} \quad \text { s.t. } \quad p_{a j}=\mathbb{P}\left\{y_{i j}=1 \mid \boldsymbol{x}_{i}=\boldsymbol{z}_{a}\right\}
\end{aligned}
$$

- We want a generative model to learn:

$$
\boldsymbol{p}_{a}=\left(p_{a j}\right)_{j \in[k]} \in \mathbb{R}^{k} \quad \text { and } \quad \mathbf{P}=\left[\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{c}\right] \in \mathbb{R}^{k \times c}
$$

- From data matrix and labels:

$$
\mathbf{X}=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right] \in \mathbb{R}^{d \times n} \quad \text { and } \quad \mathbf{Y}=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right] \in \mathbb{R}^{k \times n}
$$

Linear Generative Model:

- Consider a linear Ridge generative model:

$$
\mathcal{L}(\mathbf{W})=\frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{y}_{i}-\mathbf{W}^{\top} \boldsymbol{x}_{i}\right\|^{2}+\gamma\|\mathbf{W}\|_{\mathfrak{F}}^{2}
$$

- For a given context $a \in[c]$, forward pass is:

$$
\hat{\boldsymbol{p}}_{a}=\mathbf{W}^{\top} \boldsymbol{z}_{a} \in \mathbb{R}^{k} \quad \mathbf{W}=\frac{1}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{Y}^{\top}, \quad \mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}+z \mathbf{I}_{d}\right)^{-1}
$$

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

General Principle

Transformers
Motivation for a Theoretical Framework

Example: $k=3 \& \ell=4$

A toy model for $p_{a j}$ is:

$$
p_{a j}=\frac{\exp \left(G_{a j} / \rho\right)}{\sum_{b=1}^{k} \exp \left(G_{a b} / \rho\right)}
$$

where $\mathbf{G}=\left(G_{a b}\right) \in \mathbb{R}^{c \times k}$ is random with $\mathcal{N}(0,1)$ i.i.d. entries and $\rho>0$.

$$
k=3, \ell=4, \rho=0.9, d=k^{\ell} \quad k=3, \ell=4, \rho=0.9, d=k^{\ell}
$$

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle

Transformers
Motivation for a Theoretical Framework

Random Matrix Theory
Why RMT?
RMT Tools
Linear Generative Models
Simple Setting
Understanding Generalization

Take Away Messages

Model Output: Expectation \& Covariance

Proposition: As $d, c \rightarrow \infty$ with $\frac{d}{c} \rightarrow \eta \in(0, \infty)$, for all $a \in[c]$:

$$
\left\|\mathbb{E}\left[\hat{p}_{a}\right]-\boldsymbol{m}_{a}\right\| \leq \mathcal{O}\left(d^{-\frac{1}{2}}\right) \quad \text { and } \quad\left\|\mathbb{E}\left[\hat{p}_{a} \hat{\boldsymbol{p}}_{a}^{\top}\right]-\mathbf{C}_{a}\right\| \leq \mathcal{O}\left(d^{-\frac{1}{2}}\right)
$$

where:

$$
\boldsymbol{m}_{a}=\frac{\alpha_{a} \delta}{1+\alpha_{a} \delta} \boldsymbol{p}_{a}, \quad \mathbf{C}_{a}=\left(\frac{\alpha_{a} \delta}{1+\alpha_{a} \delta}\right)^{2} \boldsymbol{\Sigma}_{a}+\frac{\frac{\kappa}{c} \sum_{b \neq a}^{c} \frac{\alpha_{b}^{2}}{\left(1+\alpha_{b} \delta\right)^{2}} \boldsymbol{\Sigma}_{b}}{\left(1+\alpha_{a} \delta\right)^{2}(1-\beta \kappa)}
$$

where $\boldsymbol{\Sigma}_{a}=\frac{c}{\alpha_{a} n} \operatorname{Diag}\left(\boldsymbol{p}_{a}\right)+\left(1-\frac{c}{\alpha_{a} n}\right) \boldsymbol{p}_{a} \boldsymbol{p}_{a}^{\top}$ and
$\delta=\frac{\eta}{\alpha+\gamma}, \alpha=\frac{1}{c} \sum_{a=1}^{c} \frac{\alpha_{a}}{1+\alpha_{a} \delta}, \kappa=\frac{\eta}{(\alpha+\gamma)^{2}}, \beta=\frac{1}{c} \sum_{a=1}^{c}\left(\frac{\alpha_{a}}{1+\alpha_{a} \delta}\right)^{2}$

Some remarks:

- If $\alpha_{a}=1$ then $\delta=\frac{\eta-\gamma-1+\sqrt{(\eta-\gamma-1)^{2}+4 \gamma}}{2 \gamma}$ (Marchenko-Pastur result).
- The model is unbiased if δ is large.
- Variance reduces if n is large $(n \gg c)$.
- The model has a larger variance on unrepresented contexts (small α_{a}).

Mohamed Seddik

Large Language Models
General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory
Why RMT?
RMT Tools
Linear Generative
Models
Simple Setting
Understanding
Generalization
Take Away Messages

Model Output: Simulations

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models
General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory
Why RMT?
RMT Tools
Linear Generative
Models

Simple Setting

Understanding Generalization

Take Away Messages

Figure: $k=3, \ell=4, d=k^{\ell}=81, \rho=.9, \alpha_{a}=1$ and $n=5000$.

Training Error (Coincides with Test Error)

Let $\mathbf{Z}=\left[\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{c}\right] \in \mathbb{R}^{d \times c}$ and $\mathbf{D}=\operatorname{Diag}\left(\left.\frac{\alpha_{a} \delta}{1+\alpha_{a} \delta} \right\rvert\, a \in[c]\right)$, then:

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

_arge Language Models

General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory
Why RMT?
RMT Tools
Linear Generative
Models
Simple Setting
Understanding
Generalization
Take Away Messages

- The model learns with high-dimensional embeddings ($\eta=\frac{d}{c} \geq 1$).
- The statistical model does not allow us to understand generalization!

Understanding Generalization

Statistical Data Model:

- Denote k vocabulary size and c possible contexts.
- n context representations $x_{i}=\phi\left(\mathbf{X}_{i}\right) \in \mathbb{R}^{d}$ and next tokens $y_{i} \in \mathbb{R}^{k}$:

$$
\begin{aligned}
\boldsymbol{x}_{i} & =\boldsymbol{\mu}_{a}+\boldsymbol{z}_{i} \quad \text { with } \quad \boldsymbol{z}_{i} \sim \mathcal{L}\left(\mathbf{0}, \mathbf{I}_{d}\right) \quad \text { and } \quad \mathbb{P}\left\{\boldsymbol{x}_{i} \in \mathcal{C}_{a}\right\}=\pi_{a}, a \in[c] \\
\boldsymbol{y}_{i} \sim \mathbb{P}\left\{\cdot \mid \boldsymbol{x}_{i} \in \mathcal{C}_{a}\right\} & \text { s.t. } \quad p_{a j}=\mathbb{P}\left\{y_{i j}=1 \mid \boldsymbol{x}_{i} \in \mathcal{C}_{a}\right\}
\end{aligned}
$$

- We want a generative model to learn:

$$
p_{a}=\left(p_{a j}\right)_{j \in[k]} \in \mathbb{R}^{k} \quad \text { and } \quad \mathbf{P}=\left[\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{c}\right] \in \mathbb{R}^{k \times c}
$$

- From data matrix and labels:

$$
\mathbf{X}=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right] \in \mathbb{R}^{d \times n} \quad \text { and } \quad \mathbf{Y}=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right] \in \mathbb{R}^{k \times n}
$$

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle

Transformers
Motivation for a Theoretical Framework

Random Matrix Theory
Why RMT?
RMT Tools
Linear Generative
Models
Simple Setting
Understanding
Generalization
Take Away Messages

Linear Generative Model:

- Consider a linear Ridge generative model:

$$
\mathcal{L}(\mathbf{W})=\frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{y}_{i}-\mathbf{W}^{\top} \boldsymbol{x}_{i}\right\|^{2}+\gamma\|\mathbf{W}\|_{\mathcal{F}}^{2}
$$

For $a \in[c]$, forward pass for $\tilde{\boldsymbol{x}}_{a}=\boldsymbol{\mu}_{a}+\tilde{\boldsymbol{z}}_{a}$ with $\tilde{\boldsymbol{z}}_{a}$ independent of \mathbf{X} :

$$
\hat{\boldsymbol{p}}_{a}=\mathbf{W}^{\top} \tilde{\boldsymbol{x}}_{a} \in \mathbb{R}^{k} \quad \mathbf{W}=\frac{1}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{Y}^{\top}, \quad \mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}+z \mathbf{I}_{d}\right)^{-1}
$$

Generalization Error

Let $\tilde{\mathbf{X}}=\left[\tilde{\boldsymbol{x}}_{1}, \ldots, \tilde{\boldsymbol{x}}_{c}\right] \in \mathbb{R}^{d \times c}$ and denote $E_{\text {test }}=\frac{1}{c}\left\|\mathbf{P}-\mathbf{W}^{\top} \tilde{\mathbf{X}}\right\|_{\mathrm{F}}^{2}$.

Mohamed Seddik

Proposition: As $d, n \rightarrow \infty$ with $\frac{d}{n} \rightarrow \eta \in(0, \infty)$ and $c,\left\|\boldsymbol{\mu}_{a}\right\|=\mathcal{O}(1)$:

$$
\forall \varepsilon>0, \quad n^{\frac{1}{2}-\varepsilon}\left(E_{\text {test }}-\bar{E}_{\text {test }}\right) \xrightarrow{\text { a.s. }} 0
$$

where, for $\pi_{a}=\frac{1}{c}$ and $\mathbf{M}=\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{c}\right] \in \mathbb{R}^{d \times c}, \bar{E}_{\text {test }}$ is:

$$
\begin{aligned}
\bar{E}_{\text {test }} & =\frac{1}{c} \operatorname{Tr}\left[\mathbf{P P}^{\top}\left(\mathbf{I}_{c}-\frac{2 \mathbf{M}^{\top} \overline{\mathbf{Q}} \mathbf{M}}{(1+\delta) c}\right)\right]+\frac{1}{c} \sum_{a=1}^{c} \operatorname{Tr}\left(\mathbf{C}_{a}\right) \\
\mathbf{C}_{a} & =\frac{\tau \sum_{b=1}^{c} \operatorname{Diag}\left(\boldsymbol{p}_{b}\right)}{(1+\delta)^{2} c}+\mathbf{P M}^{\top}\left(\frac{\overline{\mathbf{Q}} \boldsymbol{\mu}_{a} \boldsymbol{\mu}_{a}^{\top} \overline{\mathbf{Q}}+\mathbf{R}}{(1+\delta)^{2} c^{2}}-\frac{2 \tau \overline{\mathbf{Q}}}{(1+\delta)^{3} c^{2}}\right) \mathbf{M} \mathbf{P}^{\top}
\end{aligned}
$$

with $\delta=\frac{\eta-\gamma-1+\sqrt{(\eta-\gamma-1)^{2}+4 \gamma}}{2 \gamma}, \zeta=\gamma+\frac{1}{1+\delta}, \tau=\frac{\eta(1+\delta)^{2}}{\zeta^{2}(1+\delta)^{2}-\eta}, \kappa=\frac{\eta}{\zeta^{2}}$
$\overline{\mathbf{Q}}=\frac{1}{\zeta} \mathbf{I}_{p}-\frac{1}{\zeta^{2}} \mathbf{M}\left((1+\delta) c \mathbf{I}_{c}+\frac{1}{\zeta} \mathbf{M}^{\top} \mathbf{M}\right)^{-1} \mathbf{M}^{\top}, \mathbf{R}=\frac{\overline{\mathbf{Q}}^{2}+\frac{\kappa \overline{\mathbf{Q}} \mathbf{M} \mathbf{M}^{\top} \overline{\mathbf{Q}}}{(1+\delta)^{2} c}}{1-\frac{\kappa}{(1+\delta)^{2}}}$

Large Language Models
General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theon
Why RMT?
RMT Tools
Linear Generative
Models
Simple Setting
Understanding
Generalization

Generalization Error: Simulations

Recall
A Random Matrix Theory Analysis of Linear Generative Models

$$
\mathbf{W}=\frac{1}{n}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}+\gamma \mathbf{I}_{d}\right)^{-1} \mathbf{X} \mathbf{Y}^{\top}
$$

- Large γ yields simple model: $\mathbf{W} \approx \frac{1}{n \gamma} \mathbf{X} \mathbf{Y}^{\top}$.
- Small γ yields complex model: $\mathbf{W} \approx\left(\mathbf{X X}^{\top}\right)^{-1} \mathbf{X} \mathbf{Y}^{\top}$.

- Generalization depends on optimal γ and for small $\eta=\frac{d}{n}$.

Mohamed Seddik

Large Language Models

General Principle

Transformers
Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?
RMT Tools
Linear Generative Models
Simple Setting
Understanding
Generalization

Outline

Take Away Messages

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models
General Principle
Transformers
Motivation for a Theoretical Framework

Random Matrix Theory
Why RMT?
RMT Tools
Linear Generative Models
Simple Setting
Understanding
Generalization
Take Away Messages

Take Away Messages

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

- RMT provides tools to assess ML performance when both sample size and data dimension are large.
- In this talk, we used these tools for a simple linear generative model.
- Provided exact characterization of train and test errors.

Limitations:

- Considered square loss, but an extension ${ }^{8}$ is possible with:

$$
\underset{\mathbf{W} \in \mathbb{R}^{d \times k}}{\arg \min }-\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_{i}^{\top} \log \sigma\left(\mathbf{W}^{\top} \boldsymbol{x}_{i}\right)+\gamma\|\mathbf{W}\|_{\mathrm{F}}^{2}
$$

- Extension beyond convex problems is required.
- Include attention mechanism to understand feature learning.

Thank you for your attention! melaseddik.github.io

[^6]
[^0]: $1_{\text {https: }}$ //platform.openai.com/tokenizer

[^1]: ${ }^{2}$ Ashish Vaswani, et al. "Attention is all you need", Neurips 2017.

[^2]: ${ }^{3}$ Jared Kaplan, et al. "Scaling laws for neural language models", arXiv:2001.08361 (2020).

[^3]: ${ }^{4}$ Romain Couillet and Zhenyu Liao, "Random matrix methods for machine learning", Cambridge University Press, 2022.
 ${ }^{5}$ https://random-matrix-learning.github.io/

[^4]: ${ }^{6}$ Cosme Louart and Romain Couillet, "Concentration of measure and large random matrices with an application to sample covariance matrices", arXiv:1805.08295 (2018).

[^5]: ${ }^{7}$ Walid Hachem, Philippe Loubaton and Jamal Najim, "Deterministic equivalents for certain functionals of large random matrices", (2007): 875-930.

[^6]: ${ }^{8}$ Mohamed El Amine Seddik, et al. "The unexpected deterministic and universal behavior of large softmax classifiers" AISTATS, PMLR, 2021.

