A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle Transformers Motivation for a Theoretica Framework

Random Matrix Theory

Why RMT?

RMT Tool

Linear Generative Models

Simple Setting

Understanding Generalization

Take Away Messages

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed El Amine Seddik Technology Innovation Institute melaseddik.github.io

Khalifa University Mathematics Seminar

Abu Dhabi November 23rd 2023

Outline

Large Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT? RMT Tools

inear Generative Models Simple Setting Understanding Generalization

Take Away Messages

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle

ransformers

Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tool

Linear Generative Models

Simple Setting

Understanding Generalization

Large Language Models

- LLMs became popular due to assistant chatbots (e.g., chatGPT).
- Rely on foundational models through self-supervised pre-training.

Given a corpus of vocabulary size k:

$$\underset{\mathbf{W} \in \mathbb{R}^{d \times k}, \phi}{\arg\min} - \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_{i}^{\top} \log \sigma \left(\mathbf{W}^{\top} \phi(\mathbf{X}_{i}) \right) \quad \sigma(v) = \frac{\exp(v)}{\sum_{j=1}^{k} \exp(v_{j})}$$

- $\mathbf{X}_i \in \mathbb{R}^{d \times \ell_i}$ is a context sequence (of *embeddings*).
- $y_i \in \mathbb{R}^k$ is a canonical vector encoding the next *token*.
- $\phi : \mathbb{R}^{d \times \ell_i} \to \mathbb{R}^d$ is a sequence encoder (*transformer* architecture).

NLP terminology:

- Tokenization: breaking down text into smaller units "tokens".
- Embedding: convert tokens into high-dimensional vectors.

"Mathematics is the giving of the same name to different things." HP.

 $\begin{matrix} [2118,\ 8991,\ 34805,\ 374,\ 279,\ 7231,\ 315,\ 279,\ 1890,\ 836,\ 311,\ 2204,\ 2574,\\ 2029,\ 12478,\ 13]^1 \end{matrix}$

November 23rd 2023

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle

Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

¹https://platform.openai.com/tokenizer

Transformers: The Core Mechanism

Let $\mathbf{X}_1 = \mathbf{X} \in \mathbb{R}^{d \times \ell}$ be an input sequence of ℓ embeddings of dimension d. The unmasked self-attention² layer $g_l : \mathbf{X}_l \in \mathbb{R}^{d \times \ell} \mapsto \mathbf{X}_{l+1} \in \mathbb{R}^{d \times \ell}$ is:

$$\begin{split} \mathbf{Y}_{l} &= \underbrace{\mathbf{W}_{v} \mathbf{X}_{l}}_{\text{value}} \underbrace{\mathbf{A}_{l}}_{\text{attention}} + \mathbf{X}_{l} \quad \text{with} \quad \mathbf{A}_{l} = \sigma \left(d^{-\frac{1}{2}} \underbrace{(\mathbf{W}_{k} \mathbf{X}_{l})^{\top}}_{\text{key}} \underbrace{\mathbf{W}_{q} \mathbf{X}_{l}}_{\text{query}} \right) \in \mathbb{R}^{\ell \times \ell} \\ \mathbf{X}_{l+1} &= \mathbf{W}_{2}^{\top} f\left(\mathbf{W}_{1}^{\top} \mathbf{Y}_{l} \right) + \mathbf{Y}_{l} \end{split}$$

A transformer is a composition of D layers and $\phi : \mathbb{R}^{d \times \ell} \to \mathbb{R}^d$ is:

Niki Parmar'

Google Research

nikip@google.com

$$\phi(\mathbf{X}) = \left[g_D \circ \cdots \circ g_1(\mathbf{X})\right]_{:,\ell}$$

Jakob Uszkoreit

Google Research

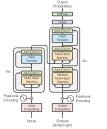
usz@google.com

Inkory Kaiser*

Google Brain

lukaszkaiser@google.com

where $[\mathbf{M}]_{:,i}$ is the *i*-th column of \mathbf{M} .



A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle

Transformers

Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tool

Linear Generative Models

Simple Setting

Understanding Generalization

Take Away Messages

²Ashish Vaswani, et al. "Attention is all you need", Neurips 2017.

Attention Is All You Need

Noam Shazeer'

Google Brain

noan@google.com

Aidan N. Gomez* †

University of Toronto

aidan@cs.toronto.edu

Illia Polosukhin* † illia.polosukhin@gmail.com

November 23rd 2023

Ashish Vaswani*

Google Brain

avaswani@google.com

Llion Jones*

Google Research

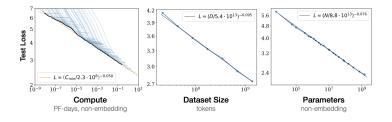
llion@google.com

Ultimately:

- Understand generalization: Express test loss in terms of hyperparameters.
- Uncertainty estimation: Control output model **bias** and **variance**.
- Predict scaling laws³ theoretically:

$$\mathcal{L}(d,n) = \left[\left(\frac{d_c}{d}\right)^{\frac{\alpha_d}{\alpha_n}} + \frac{n_c}{n} \right]^{\alpha_n}$$

where d is number of parameters and n is dataset size.



³Jared Kaplan, et al. "Scaling laws for neural language models", arXiv:2001.08361 (2020).

November 23rd 2023

Khalifa University Mathematics Seminar

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models.

Seneral Principle

Transforme

Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

Outline

Large Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory Why RMT? RMT Tools

inear Generative Models Simple Setting Understanding Generalizatior

Take Away Messages

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle Transformers

Framework

Random Matrix Theory

Why RMT?

RMT Tool

Linear Generative Models

Simple Setting

Understanding Generalization

Why RMT?

- ▶ The problem involves high-dimensions: both *d* and *n* are large!
- Estimating test loss: a scalar quantity function of a random matrix (e.g. data matrix).

RMT has been applied to analyze a wide range of ML problems⁴⁵:

- Kernel Methods.
- Large Neural Networks & NTKs.
- Implicit Convex Optimization Problems.
- Unsupervised, Semi-supervised, Transfer and Multi-task Learning.

 $^4 {\rm Romain}$ Couillet and Zhenyu Liao, "Random matrix methods for machine learning", Cambridge University Press, 2022.

⁵https://random-matrix-learning.github.io/

November 23rd 2023

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle Transformers Motivation for a Theoretica Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

Example: Large Sample Covariance Matrices

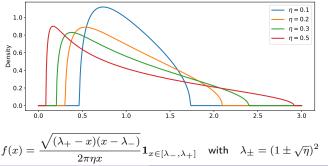
Let $\mathbf{X} = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}$ with $x_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$. Classical statistics: when $n \to \infty$ and d is fixed, with maximum likelihood:

$$\hat{\mathbf{C}} = rac{1}{n}\sum_{i=1}^n x_i x_i^ op = rac{1}{n} \mathbf{X} \mathbf{X}^ op \stackrel{\mathrm{a.s.}}{\longrightarrow} \mathbf{\Sigma}$$

• RMT regime: both $d, n \to \infty$, curse of dimension occurs:

$$\|\hat{\mathbf{C}}-\boldsymbol{\Sigma}\|\not\rightarrow 0 \quad \text{as} \quad \frac{d}{n}\rightarrow \eta\in(0,\infty)$$

• Marchenko-Pastur Law (1967): when $\Sigma = I_d$:



A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Settin

Understanding Generalization

Take Away Messages

November 23rd 2023

Khalifa University Mathematics Seminar

RMT Tools: Spectral Measure & Stieltjes Transform

- Let $\mathbf{S} \in \mathbb{R}^{d \times d}$ some symmetric random matrix and λ_i its eigenvalues.
- Originally, RMT is about characterizing the **spectrum** of **S** when $d \rightarrow \infty$.
- Under control of the moments of the entries of S:

$$u_d = rac{1}{d} \sum_{i=1}^a \delta_{\lambda_i} \xrightarrow[d \to \infty]{w}
u$$
 (in the weak sense)

where ν is a **deterministic** probability measure.

Stieltjes Transform of a probability measure *ν* is:

$$g_{\nu}(z) = \int \frac{d\nu(\lambda)}{\lambda - z} \quad z \in \mathbb{C} \setminus \operatorname{Supp}(\nu)$$

Equivalence: Let $(\nu_d)_{d \in \mathbb{N}}$ be a sequence of probability measures. Then:

$$\nu_d \xrightarrow[d \to \infty]{w} \nu \quad \Leftrightarrow \quad g_{\nu_d}(z) \xrightarrow[d \to \infty]{a.s.} g_{\nu}(z) \quad \text{for all} \quad z \in \mathbb{C} \setminus \text{Supp}(\nu)$$

• Resolvent: Let $\mathbf{Q}(z) = (\mathbf{S} + z\mathbf{I}_d)^{-1}$, we have:

$$g_{\nu_d}(z) = \frac{1}{d} \sum_{i=1}^d \frac{1}{\lambda_i - z} = \frac{1}{d} \operatorname{Tr} \mathbf{Q}(-z)$$

• $g_{\nu_d}(z)$ is a linear form of $\mathbf{Q}(-z)$.

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

Concentration (Trace Lemma):

- $x \in \mathbb{R}^d$ random with finite 2m order moment and let $\Sigma = \mathbb{E}[xx^\top]$.
- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{d \times d} \text{ independent of } \boldsymbol{x} \sim \mathcal{L}(\mathbf{0}, \boldsymbol{\Sigma}) \text{ and } \|\mathbf{A}\|, \|\boldsymbol{\Sigma}\| < \infty.$

Then:

$$\mathbb{E}_{\boldsymbol{x}}\left[\left|\frac{1}{d}\boldsymbol{x}^{\top}\mathbf{A}\boldsymbol{x}-\frac{1}{d}\operatorname{Tr}\left(\boldsymbol{\Sigma}\mathbf{A}\right)\right|^{m}\right] \leq C \, d^{-\frac{m}{2}} \quad \Rightarrow \quad \left[\frac{1}{d}\boldsymbol{x}^{\top}\mathbf{A}\boldsymbol{x} \xrightarrow{\operatorname{a.s.}} \frac{1}{d}\operatorname{Tr}\left(\boldsymbol{\Sigma}\mathbf{A}\right)\right]$$

Deterministic Equivalent:

▶ Definition: $\mathbf{Q} \leftrightarrow \bar{\mathbf{Q}}$ if $u(\mathbf{Q} - \bar{\mathbf{Q}}) \xrightarrow{\text{a.s.}} 0$ for any bounded linear form $u : \mathbb{R}^{d \times d} \to \mathbb{R}$.

Let $\mathbf{X} = [x_1, \dots, x_d] \in \mathbb{R}^{d imes n}$ with $x_i \sim \mathcal{L}(\mathbf{0}, \mathbf{\Sigma})$ and independent, then⁶:

$$\mathbf{Q}(z) = \left(\frac{1}{n}\mathbf{X}\mathbf{X}^\top + z\mathbf{I}_d\right)^{-1} \leftrightarrow \bar{\mathbf{Q}}(z) = \left(\frac{\mathbf{\Sigma}}{1+\delta(z)} + z\mathbf{I}_d\right)^{-1}$$

where $\delta(z) = \frac{1}{n} \operatorname{Tr} \left(\boldsymbol{\Sigma} \bar{\mathbf{Q}}(z) \right)$.

• Limiting Stieltjes transform is given by $g_{\nu}(z) = \frac{1}{d} \operatorname{Tr} \bar{\mathbf{Q}}(-z)$.

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

⁶Cosme Louart and Romain Couillet, "Concentration of measure and large random matrices with an application to sample covariance matrices", arXiv:1805.08295 (2018).

RMT Tools: Sketch of Proof

Let
$$\mathbf{Q}_{-i} = \left(\frac{1}{n}\mathbf{X}\mathbf{X}^{\top} - \frac{1}{n}x_ix_i^{\top} + z\mathbf{I}_d\right)^{-1}$$
 and $\bar{\mathbf{Q}} = (\mathbf{F} + z\mathbf{I}_d)^{-1}$, with
 $\mathbf{Q} = \mathbf{Q}_{-i} - \frac{\mathbf{Q}_{-i}\frac{1}{n}x_ix_i^{\top}\mathbf{Q}_{-i}}{1 + \frac{1}{n}x_i^{\top}\mathbf{Q}_{-i}x_i}$ $\mathbf{Q}x_i = \frac{\mathbf{Q}_{-i}x_i}{1 + \frac{1}{n}x_i^{\top}\mathbf{Q}_{-i}x_i}$

and $\mathbf{A}^{-1}-\mathbf{B}^{-1}=\mathbf{A}^{-1}(\mathbf{B}-\mathbf{A})\mathbf{B}^{-1}.$

 ${\bf Q}$ concentrates around $\mathbb{E}\left[{\bf Q}\right]$ is the sense of deterministic equivalents^7, and:

$$\mathbb{E}\left[\mathbf{Q} - \bar{\mathbf{Q}}\right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{Q}_{-i} \left(\frac{x_i x_i^{\top}}{1 + \frac{1}{n} x_i^{\top} \mathbf{Q}_{-i} x_i} - \mathbf{F}\right) \bar{\mathbf{Q}}\right] + \mathcal{O}(n^{-1})$$

By trace lemma:

$$\begin{split} &\frac{1}{n} \boldsymbol{x}_{i}^{\top} \mathbf{Q}_{-i} \boldsymbol{x}_{i} \xrightarrow{\text{a.s.}} \frac{1}{n} \operatorname{Tr} \left(\boldsymbol{\Sigma} \mathbb{E} \left[\mathbf{Q}_{-i} \right] \right) = \frac{1}{n} \operatorname{Tr} \left(\boldsymbol{\Sigma} \bar{\mathbf{Q}} \right) + \mathcal{O}(n^{-1}) \\ & \Rightarrow \quad \bar{\mathbf{Q}} = \left(\frac{\boldsymbol{\Sigma}}{1+\delta} + z \mathbf{I}_{d} \right)^{-1} \quad \text{with} \quad \delta = \frac{1}{n} \operatorname{Tr} \left(\boldsymbol{\Sigma} \bar{\mathbf{Q}} \right) \end{split}$$

Remark: $\delta \to 0$ if $n \to \infty$ with d fixed.

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle Transformers Motivation for a Theoretica Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

⁷Walid Hachem, Philippe Loubaton and Jamal Najim, "Deterministic equivalents for certain functionals of large random matrices", (2007): 875-930.

Outline

Large Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT? RMT Tools

Linear Generative Models Simple Setting

Understanding Generalization

Take Away Messages

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle Transformers Motivation for a Theoretic

Framework

Random Matrix Theory

Why RMT?

RMT Tool

Linear Generative Models

Simple Setting

Understanding Generalization

Statistical Data Model:

- Denote k vocabulary size and ℓ context length (possible contexts $c = k^{\ell}$).
- ▶ n context representations $x_i = \phi(\mathbf{X}_i) \in \mathbb{R}^{d}$ and next tokens $y_i \in \mathbb{R}^k$:

$$\begin{array}{ll} x_i = z_a \sim \mathcal{L}(\mathbf{0}, \mathbf{I}_d) & \text{with} \quad \mathbb{P}\{x_i = z_a\} = \alpha_a/c \quad a \in [c] \\ y_i \sim \mathbb{P}\{\cdot \mid x_i = z_a\} & \text{s.t.} \quad p_{aj} = \mathbb{P}\{y_{ij} = 1 \mid x_i = z_a\} \end{array}$$

We want a generative model to learn:

$$oldsymbol{p}_a = (p_{aj})_{j \in [k]} \in \mathbb{R}^k$$
 and $oldsymbol{P} = [oldsymbol{p}_1, \dots, oldsymbol{p}_c] \in \mathbb{R}^{k imes c}$

From data matrix and labels:

$$\mathbf{X} = [m{x}_1, \dots, m{x}_n] \in \mathbb{R}^{d imes n}$$
 and $\mathbf{Y} = [m{y}_1, \dots, m{y}_n] \in \mathbb{R}^{k imes n}$

Linear Generative Model:

Consider a linear Ridge generative model:

$$\mathcal{L}(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{y}_i - \mathbf{W}^{\top} \boldsymbol{x}_i\|^2 + \gamma \|\mathbf{W}\|_{\mathsf{F}}^2$$

For a given context $a \in [c]$, forward pass is:

$$\widehat{\boldsymbol{p}_a = \mathbf{W}^\top \boldsymbol{z}_a \in \mathbb{R}^k} \quad \mathbf{W} = \frac{1}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{Y}^\top, \quad \mathbf{Q}(z) = \left(\frac{1}{n} \mathbf{X} \mathbf{X}^\top + z \mathbf{I}_d\right)^{-1}$$

November 23rd 2023

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

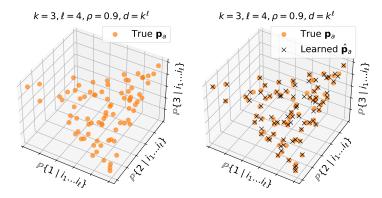
Understanding Generalization

Example: $k = 3 \& \ell = 4$

A toy model for p_{aj} is:

$$p_{aj} = \frac{\exp\left(G_{aj}/\rho\right)}{\sum_{b=1}^{k} \exp\left(G_{ab}/\rho\right)}$$

where $\mathbf{G} = (G_{ab}) \in \mathbb{R}^{c \times k}$ is random with $\mathcal{N}(0, 1)$ i.i.d. entries and $\rho > 0$.



A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

Model Output: Expectation & Covariance

$$\begin{split} & \text{Proposition: As } d, c \to \infty \text{ with } \frac{d}{c} \to \eta \in (0, \infty) \text{, for all } a \in [c] \text{:} \\ & \|\mathbb{E}\left[\hat{p}_{a}\right] - m_{a}\| \leq \mathcal{O}(d^{-\frac{1}{2}}) \quad \text{and} \quad \left\|\mathbb{E}\left[\hat{p}_{a}\hat{p}_{a}^{\top}\right] - \mathbf{C}_{a}\right\| \leq \mathcal{O}(d^{-\frac{1}{2}}) \end{split}$$

where:

$$\begin{split} m_{a} &= \frac{\alpha_{a}\delta}{1+\alpha_{a}\delta} p_{a}, \quad \mathbf{C}_{a} = \left(\frac{\alpha_{a}\delta}{1+\alpha_{a}\delta}\right)^{2} \mathbf{\Sigma}_{a} + \frac{\frac{\kappa}{c} \sum_{b\neq a}^{c} \frac{\alpha_{b}^{2}}{(1+\alpha_{b}\delta)^{2}} \mathbf{\Sigma}_{b}}{(1+\alpha_{a}\delta)^{2} (1-\beta\kappa)} \\ \text{where } \mathbf{\Sigma}_{a} &= \frac{c}{\alpha_{a}n} \operatorname{Diag}\left(p_{a}\right) + \left(1 - \frac{c}{\alpha_{a}n}\right) p_{a} p_{a}^{\top} \text{ and} \\ \delta &= \frac{\eta}{\alpha+\gamma}, \ \alpha = \frac{1}{c} \sum_{a=1}^{c} \frac{\alpha_{a}}{1+\alpha_{a}\delta}, \ \kappa = \frac{\eta}{(\alpha+\gamma)^{2}}, \ \beta = \frac{1}{c} \sum_{a=1}^{c} \left(\frac{\alpha_{a}}{1+\alpha_{a}\delta}\right)^{2} \end{split}$$

Some remarks:

• If
$$\alpha_a = 1$$
 then $\delta = \frac{\eta - \gamma - 1 + \sqrt{(\eta - \gamma - 1)^2 + 4\gamma}}{2\gamma}$ (Marchenko-Pastur result).

- The model is unbiased if δ is large.
- Variance reduces if n is large $(n \gg c)$.
- The model has a larger variance on unrepresented contexts (small α_a).

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

Linear Generative Models

Simple Setting

Understanding Generalization

Model Output: Simulations

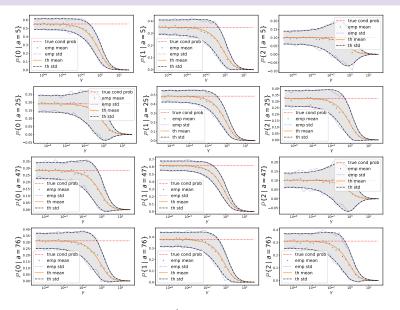


Figure: k = 3, $\ell = 4$, $d = k^{\ell} = 81$, $\rho = .9$, $\alpha_a = 1$ and n = 5000.

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

Large Language Models

General Principle

Transformer

Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tool

Linear Generative Models

Simple Setting

Understanding Generalization

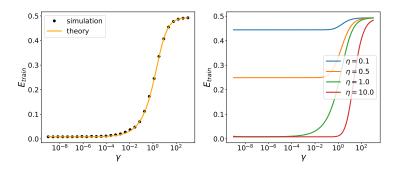
Take Away Messages

November 23rd 2023

Training Error (Coincides with Test Error)

Let
$$\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_c] \in \mathbb{R}^{d \times c}$$
 and $\mathbf{D} = \text{Diag}\left(\frac{\alpha_a \delta}{1 + \alpha_a \delta} \mid a \in [c]\right)$, then:

$$E_{\text{train}} = \frac{1}{c} \|\mathbf{P} - \mathbf{W}^{\top} \mathbf{Z} \|_{\mathsf{F}}^{2} \xrightarrow{\text{a.s.}} \frac{1}{c} \operatorname{Tr} \left[\mathbf{P} \left(\mathbf{I}_{c} - 2\mathbf{D} \right) \mathbf{P}^{\top} \right] + \frac{1}{c} \sum_{a=1}^{c} \operatorname{Tr} \left(\mathbf{C}_{a} \right)$$



• The model learns with high-dimensional embeddings ($\eta = \frac{d}{c} \ge 1$).

The statistical model does not allow us to understand generalization!

November 23rd 2023

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tool

Linear Generative Models

Simple Setting

Understanding Generalization

Understanding Generalization

Statistical Data Model:

Denote k vocabulary size and c possible contexts.

• *n* context representations $x_i = \phi(\mathbf{X}_i) \in \mathbb{R}^d$ and next tokens $y_i \in \mathbb{R}^k$:

$$\begin{split} & x_i = \mu_a + z_i \quad \text{with} \quad z_i \sim \mathcal{L}(\mathbf{0}, \mathbf{I}_d) \quad \text{and} \quad \mathbb{P}\{x_i \in \mathcal{C}_a\} = \pi_a, \, a \in [c] \\ & y_i \sim \mathbb{P}\{\cdot \mid x_i \in \mathcal{C}_a\} \quad \text{s.t.} \quad p_{aj} = \mathbb{P}\{y_{ij} = 1 \mid x_i \in \mathcal{C}_a\} \end{split}$$

We want a generative model to learn:

$$p_a = (p_{aj})_{j \in [k]} \in \mathbb{R}^k$$
 and $\mathbf{P} = [p_1, \dots, p_c] \in \mathbb{R}^{k imes c}$

From data matrix and labels:

$$\mathbf{X} = [x_1, \dots, x_n] \in \mathbb{R}^{d imes n}$$
 and $\mathbf{Y} = [y_1, \dots, y_n] \in \mathbb{R}^{k imes n}$

Linear Generative Model:

Consider a *linear Ridge generative model*:

$$\mathcal{L}(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{y}_i - \mathbf{W}^{\top} \boldsymbol{x}_i\|^2 + \gamma \|\mathbf{W}\|_{\mathsf{F}}^2$$

For $a \in [c]$, forward pass for $\tilde{x}_a = \mu_a + \tilde{z}_a$ with \tilde{z}_a independent of X:

$$\widehat{\boldsymbol{p}_{a}} = \mathbf{W}^{\top} \widetilde{\boldsymbol{x}}_{a} \in \mathbb{R}^{k} \quad \mathbf{W} = \frac{1}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{Y}^{\top}, \quad \mathbf{Q}(z) = \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top} + z \mathbf{I}_{d}\right)^{-1}$$

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle Transformers Motivation for a Theoretica Framework

Random Matrix Theory

Why RMT?

RMT Tools

_inear Generative Vlodels

Simple Setting

Understanding Generalization

Take Away Messages

November 23rd 2023

Generalization Error

Let
$$\tilde{\mathbf{X}} = [\tilde{x}_1, \dots, \tilde{x}_c] \in \mathbb{R}^{d \times c}$$
 and denote $E_{\text{test}} = \frac{1}{c} \|\mathbf{P} - \mathbf{W}^\top \tilde{\mathbf{X}}\|_{\mathsf{F}}^2$.

Proposition: As
$$d, n \to \infty$$
 with $\frac{d}{n} \to \eta \in (0, \infty)$ and $c, ||\mu_a|| = \mathcal{O}(1)$:

$$\forall \varepsilon > 0, \quad n^{\frac{1}{2}-\varepsilon} \left(E_{\text{test}} - \bar{E}_{\text{test}} \right) \xrightarrow{\text{a.s.}} 0$$

where, for
$$\pi_a = \frac{1}{c}$$
 and $\mathbf{M} = [\mu_1, \dots, \mu_c] \in \mathbb{R}^{d \times c}$, \bar{E}_{test} is:

$$\bar{E}_{\text{test}} = \frac{1}{c} \operatorname{Tr} \left[\mathbf{P} \mathbf{P}^{\top} \left(\mathbf{I}_{c} - \frac{2\mathbf{M}^{\top} \bar{\mathbf{Q}} \mathbf{M}}{(1+\delta)c} \right) \right] + \frac{1}{c} \sum_{a=1}^{c} \operatorname{Tr} \left(\mathbf{C}_{a} \right)$$
$$\tau \sum_{a=1}^{c} \sum_{a=1}^{c} \operatorname{Tr} \left(\mathbf{C}_{a} \right) = \frac{1}{c} \left(\bar{\mathbf{Q}}_{a} - \frac{1}{c} \mathbf{Q}_{a} \right)$$

$$\mathbf{C}_{a} = \frac{\tau \sum_{b=1} \operatorname{Diag}(p_{b})}{(1+\delta)^{2}c} + \mathbf{P}\mathbf{M}^{\top} \left(\frac{\mathbf{Q}\mu_{a}\mu_{a}\mathbf{Q} + \mathbf{R}}{(1+\delta)^{2}c^{2}} - \frac{2\tau\mathbf{Q}}{(1+\delta)^{3}c^{2}}\right)\mathbf{M}\mathbf{P}^{\top}$$

with
$$\delta = \frac{\eta - \gamma - 1 + \sqrt{(\eta - \gamma - 1)^2 + 4\gamma}}{2\gamma}$$
, $\zeta = \gamma + \frac{1}{1 + \delta}$, $\tau = \frac{\eta (1 + \delta)^2}{\zeta^2 (1 + \delta)^2 - \eta}$, $\kappa = \frac{\eta}{\zeta^2}$

$$\bar{\mathbf{Q}} = \frac{1}{\zeta} \mathbf{I}_p - \frac{1}{\zeta^2} \mathbf{M} \left((1+\delta)c\mathbf{I}_c + \frac{1}{\zeta} \mathbf{M}^\top \mathbf{M} \right)^{-1} \mathbf{M}^\top, \, \mathbf{R} = \frac{\bar{\mathbf{Q}}^2 + \frac{\kappa \bar{\mathbf{Q}} \mathbf{M} \mathbf{M}^\top \bar{\mathbf{Q}}}{(1+\delta)^2 c}}{1 - \frac{\kappa}{(1+\delta)^2}}$$

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

Take Away Messages

\

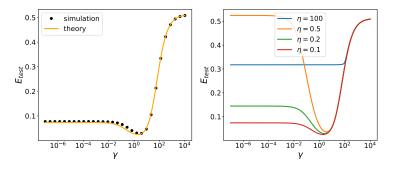
Generalization Error: Simulations

Recall

$$\mathbf{W} = \frac{1}{n} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top} + \gamma \mathbf{I}_d \right)^{-1} \mathbf{X} \mathbf{Y}^{\top}$$

• Large
$$\gamma$$
 yields simple model: $\mathbf{W} \approx \frac{1}{n\gamma} \mathbf{X} \mathbf{Y}^{\top}$

Small γ yields complex model: $\mathbf{W} \approx \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1} \mathbf{X}\mathbf{Y}^{\top}$.



Generalization depends on **optimal** γ and for small $\eta = \frac{d}{n}$.

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle

ransformers

Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

Outline

Large Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT? RMT Tools

inear Generative Models Simple Setting Understanding Generalizatio

Take Away Messages

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle

Transformers Motivation for a Theoretica

Random Matrix Theory

Why RMT?

RMT Tool

Linear Generative Models

Simple Setting

Understanding Generalization

- RMT provides tools to assess ML performance when both sample size and data dimension are large.
- In this talk, we used these tools for a simple linear generative model.
- Provided exact characterization of train and test errors.

Limitations:

Considered square loss, but an **extension**⁸ is possible with:

$$\operatorname*{arg\,min}_{\mathbf{W} \in \mathbb{R}^{d \times k}} - \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_{i}^{\top} \log \sigma \left(\mathbf{W}^{\top} \boldsymbol{x}_{i} \right) + \gamma \| \mathbf{W} \|_{\mathsf{F}}^{2}$$

- Extension beyond convex problems is required.
- Include attention mechanism to understand feature learning.

Thank you for your attention! melaseddik.github.io

November 23rd 2023

A Random Matrix Theory Analysis of Linear Generative Models

Mohamed Seddik

arge Language Models

General Principle Transformers Motivation for a Theoretical Framework

Random Matrix Theory

Why RMT?

RMT Tools

Linear Generative Models

Simple Setting

Understanding Generalization

 $^{^8 \}rm Mohamed$ El Amine Seddik, et al. "The unexpected deterministic and universal behavior of large softmax classifiers" AISTATS, PMLR, 2021.