
Random Matrix
Theory for AI: From
Theory to Practice

MEA. Seddik

Abstract

Outline

High Dimensionality
Drawbacks
Large Sample Covariance
Matrices

Large Kernel Matrices

RMT Meets ML

Main Contributions
From GMMs to
Concentration through
GANs

Some ML methods under
Concentration

Behavior of Gram
Matrices

Behavior of Kernel
Matrices

Beyond Kernels to Neural
Networks

Conclusions &
Perspectives

Random Matrix Theory for AI:
From Theory to Practice

Ph.D. defense

Mohamed El Amine Seddik
supervised by Romain Couillet & Mohamed Tamaazousti

https://melaseddik.github.io/

CEA List, CentraleSupélec, University of Paris-Saclay, France

November 3, 2020

November 3, 2020 CEA List, CentraleSupélec, University of Paris-Saclay, France

https://melaseddik.github.io/


Random Matrix
Theory for AI: From
Theory to Practice

MEA. Seddik

Abstract

Outline

High Dimensionality
Drawbacks
Large Sample Covariance
Matrices

Large Kernel Matrices

RMT Meets ML

Main Contributions
From GMMs to
Concentration through
GANs

Some ML methods under
Concentration

Behavior of Gram
Matrices

Behavior of Kernel
Matrices

Beyond Kernels to Neural
Networks

Conclusions &
Perspectives

Abstract/ 2/41

Abstract

Machine Learning

High-dimensional Data

Context:
I Study of standard ML classifiers

on real high-dimensional data.

Motivation:
I RMT predicts performances

under Gaussian data model.
I BUT Real data are unlikely

close to Gaussian vectors.

In this thesis, we highlighted:
I GAN data (≈ Real data) are Concentrated vectors.
I Universality result:

Only first and second order statistics of Concentrated data
describe behavior of studied classifiers.
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Large Sample Covariance Matrices (MP’67)

I Let X = [x1, . . . , xn] ∈ Rp×n such that x i ∼ N (0, Ip).
I Maximum likelihood suggests sample covariance as estimator for

population covariance (here C = Ip).

Ĉ =
1
n

n∑
i=1

x ixᵀi =
1
n
XXᵀ a.s.−→ Ip

consistent when n→∞ with p fixed.
I When p ∼ n, inconsistency occurs:

‖Ĉ − Ip‖ 6→ 0 as n, p →∞,
p
n
→ c ∈ (0,∞)
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nXX

ᵀ

Marchenko-Pastur Law (MP’67)
Population covariance spec.

Example of drawback: 1
p ‖C‖

2
F = 1

p tr (C2) ≈ 1
p tr (Ĉ2)− c

(
1
p tr (Ĉ)

)2.
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Large Kernel Matrices (ElK’10, CBG’16)

I Let x i =

{
+µ
or
−µ

}
+ z i with z i ∼ N (0, Ip).

I Separability possible only if ‖µ‖ ≥ O(1) by Neyman-Pearson test.
I Implies (in worst case) non-trivial growth setting

max
1≤i 6=j≤n

{ 1
p
‖x i − x j‖2 − 2

}
a.s.−→ 0 as p →∞

irrespective of classes (C1 or C2) of x i and x j .
I Taylor expanding Kij ≡ f

(
1
p ‖x i − x j‖2

)
yields (for j ≡ [+1 n

2
,−1 n

2
])

K = f (2)1n1ᵀn + f ′(2)(ZᵀZ/p + ϕ(µ)j jᵀ/p) + ∗ as
p
n
→ c ∈ (0,∞)
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RMT Meets Machine Learning

RMT predicts performances of various ML methods:
I Kernel Spectral Clustering (Couillet+’16).
I Least Squares Support Vectors Machines (Liao+’17).
I Semi-supervised Learning (Mai+’17).
I Random Shallow Neural Networks (Pennington+’17, Louart+’18).
I Random Feature Maps (Liao+’18).
I Learning Dynamics of Shallow Nets (Liao+’18).
I Loss Surface Geometry of Deep nets (Choromanska+’15, Pennington+’17).
I Learning with Dropout (Seddik+’20).
I Analysis of Logistic Regression (ElKaroui+’13, Mai+’19).
I Multi-task and Transfer Learning (Tiomoko+’20).

Mostly under Gaussian assumptions (for x i ∈ C`):
x i = µ` + Σ

1
2
`
z i with z i ∼ N (0, Ip)

Real data Gaussian data

November 3, 2020 CEA List, CentraleSupélec, University of Paris-Saclay, France



Random Matrix
Theory for AI: From
Theory to Practice

MEA. Seddik

Abstract

Outline

High Dimensionality
Drawbacks
Large Sample Covariance
Matrices

Large Kernel Matrices

RMT Meets ML

Main Contributions
From GMMs to
Concentration through
GANs

Some ML methods under
Concentration

Behavior of Gram
Matrices

Behavior of Kernel
Matrices

Beyond Kernels to Neural
Networks

Conclusions &
Perspectives

Main Contributions/ 8/41

Outline

High Dimensionality Drawbacks
Large Sample Covariance Matrices
Large Kernel Matrices
RMT Meets ML

Main Contributions
From GMMs to Concentration through GANs
Some ML methods under Concentration

Behavior of Gram Matrices
Behavior of Kernel Matrices
Beyond Kernels to Neural Networks

Conclusions & Perspectives

November 3, 2020 CEA List, CentraleSupélec, University of Paris-Saclay, France



Random Matrix
Theory for AI: From
Theory to Practice

MEA. Seddik

Abstract

Outline

High Dimensionality
Drawbacks
Large Sample Covariance
Matrices

Large Kernel Matrices

RMT Meets ML

Main Contributions
From GMMs to
Concentration through
GANs

Some ML methods under
Concentration

Behavior of Gram
Matrices

Behavior of Kernel
Matrices

Beyond Kernels to Neural
Networks

Conclusions &
Perspectives

Main Contributions/From GMMs to Concentration through GANs 9/41

From GMMs to Concentration through GANs

Contribution 1
GAN-data: Example of Concentrated Vectors

MEA. Seddik, C. Louart, M. Tamaazousti, R. Couillet, “Random
Matrix Theory Proves that Deep Learning Representations of
GAN-data Behave as Gaussian Mixtures”, ICML’2020.
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From GMMs to Concentration through GANs

I Following R. Feynman’s quote:

“What I cannot create, I do not understand”

I Generative models provide examples of realistic data.

min
G

max
D

Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

Generated images = G(Gaussian)
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From GMMs to Concentration through GANs

Figure: Images artificially generated with BigGAN (BDS’19).

Real Data ≈ GAN Data = ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1︸ ︷︷ ︸
G

(Gaussian)

where Φi ’s correspond to standard NN operations.

⇒ The Φi ’s are Lipschitz maps.
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From GMMs to Concentration through GANs

Definition (Concentrated Vectors)
Given a normed space (X , ‖ · ‖) and q > 0, a random vector x ∈ X is
q-exponentially concentrated if for any 1-Lipschitz function ϕ : X → R, there
exist C , σ > 0 such that

∀t > 0, P {|ϕ(x)− Eϕ(x)| ≥ t} ≤ Ce−(t/σ)q denoted−−−−−→ x ∝ Eq(σ)

If σ independent of dim(X ), we denote x ∝ Eq .

Concentrated vectors enjoy:

(P1) If z ∼ N (0, Ip) then z ∝ E2
“Gaussian vectors are concentrated vectors”

(P2) If z ∝ Eq and G is a λG-Lipschitz map, then G(z) ∝ Eq(λG)
“Concentrated vectors are stable through Lipschitz maps”

⇒ GAN data are concentrated vectors by design.

Remark: Still, we need to control λG .
November 3, 2020 CEA List, CentraleSupélec, University of Paris-Saclay, France
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Control of λG with Spectral Normalization (SN)

I SN stabilizes learning of GANs (BD+’19).
I SN makes neural nets robust against adversarial examples (SZ+’13,

AS+’17).

I Let σ∗ > 0 and G a N-layers NN
I di−1: input dim, di : output dim of layer i
I Assimilate SGD to random walk (AS’18):

W ←W − ηE , with E i,j ∼ N (0, 1)
W ←W −max(0, σ1(W )− σ∗) u1(W )v1(W )ᵀ (with SN)

λG bounded (SLTC’20), for ε > 0

λG ≤
N∏
i=1

(
ε+
√
σ2∗ + η2didi−1

)
0 200 400 600 800 1,000

1
2
3
4
5
6

σ∗ = 2
σ∗ = 3
σ∗ = 4

Iterations

Without SN

With SN

Theoretical bound
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Some ML methods under Concentration

Contribution 2
Linear Classifiers: Behavior of Gram Matrices

MEA. Seddik, C. Louart, M. Tamaazousti, R. Couillet, “Random
Matrix Theory Proves that Deep Learning Representations of
GAN-data Behave as Gaussian Mixtures”, ICML’2020.
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Model & Assumptions
(A1) Data matrix (distributed in k classes C1, C2, . . . , Ck):

X =

x1, . . . , xn1︸ ︷︷ ︸
∝Eq1

, xn1+1, . . . , xn2︸ ︷︷ ︸
∝Eq2

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∝Eqk

 ∈ Rp×n

Model statistics: µ` = Ex i∈C`
[x i ], Σ` = Ex i∈C`

[x ixᵀi ]− µ`µ
ᵀ
`

(A2) Growth rate assumptions: As p →∞,
1. p/n→ c ∈ (0,∞).
2. k fixed.
3. ‖µ`‖ = O(√p).

Gram matrix and its resolvent:

G =
1
p
XᵀX, Q(z) = (G + zIn)−1

m(z) =
1
n
tr (Q(−z)), UUᵀ =

−1
2πi

∮
γ

Q(−z)dz
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Notion of Deterministic Equivalent

Definition (Deterministic Equivalent (Hachem+’07))

Q ↔ Q̄

if for all a, b ∈ Rn and A ∈ Rn×n of bounded norms:

1
n
trA(Q − Q̄) a.s.−→ 0, aᵀ(Q − Q̄)b a.s.−→ 0

Examples (Sample covariance matrix (Louart+’18))
Let k = 1 and C = Σ1 + µ1µᵀ

1

R(z) ≡
( 1
n
XXᵀ + zIp

)−1
↔ R̄(z) ≡

( C
1 + δ

+ zIp
)−1

δ =
1
n
tr (CR̄(z))

For R̄(z) = (F + zIp)−1:

R̃ − ER =
1
n

n∑
i=1

E

[
R−i

(
x ixᵀi

1 + 1
n x

ᵀ
i R−ix i

− F
)
R̄
]

+ ∗

Remark: δ = 0 in the classical regime: n→∞ with p fixed.
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Main Result: Universality of Linear Classifiers

Theorem (Resolvent of the Gram Matrix (SLTC’20))
Under Assumptions (A1-2), we have Q(z) ∝ Eq(p−

1
2 ). Furthermore,

Q(z)↔ Q̄(z) ≡
1
z

Λ(z) +
1
p z

JΩ(z)Jᵀ

with Λ(z) = diag
{

1n`
1+δ`(z)

}k

`=1
and Ω(z) = diag{µᵀ

`
R̄(z)µ`}k`=1

R̄(z) =

(
1
k

k∑
`=1

Σ` + µ`µ
ᵀ
`

1 + δ`(z)
+ zIp

)−1
with δ(z) = [δ1(z), . . . , δk(z)] unique solution to:

δ`(z) = tr

(
(Σ` + µ`µ

ᵀ
`

)

(
1
k

k∑
j=1

Σj + µjµ
ᵀ
j

1 + δj (z)
+ zIp

)−1)
for each ` ∈ [k]

Key Observation: Only first and second order statistics matter!
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Application to CNN Representations of GAN Images

Generator

Discriminator

Lipschitz operation

Real / Fake

Representation Network

Lipschitz operation

Concentrated Vectors

I CNN representations → penultimate layer.
I Popular architectures: Resnet, VGG, Densenet.
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Application to CNN Representations of GAN Images
G

A
N

 I
m

a
g

e
s

R
e
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g

e
s

Figure: k = 3 classes, n = 3000 images.
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Application to CNN Representations of GAN Images

G
A

N
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Performance of a linear SVM classifier (GAN data)

GAN Images
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Performance of a linear SVM classifier (Real data)

Real Images
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Some ML methods under Concentration

Contribution 3
Kernel Methods: Behavior of Kernel Matrices

MEA. Seddik, M. Tamaazousti, R. Couillet, “Kernel Random
Matrices of Large Concentrated Data: The Example of GAN-
generated Images”, ICASSP’2019.
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Model & Assumptions

(A1) Data matrix (distributed in k classes C1, C2, . . . , Ck):

X =

x1, . . . , xn1︸ ︷︷ ︸
∝Eq1

, xn1+1, . . . , xn2︸ ︷︷ ︸
∝Eq2

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∝Eqk

 ∈ Rp×n

Model statistics: µ` = Ex i∈C`
[x i ], Σ` = Ex i∈C`

[x ixᵀi ]− µ`µ
ᵀ
`

µ =
∑k

`=1
n`
n µ`, µ̄` = µ− µ`, Σ =

∑k
`=1

n`
n Σ`, Σ̄` = Σ−Σ`

(A2) Growth rate assumptions: As p →∞,
- (Data) p/n→ c ∈ (0,∞), n`/n→ c` ∈ (0, 1), k fixed.
- (Means) ‖µ̄`‖ = O(1).
- (Covariances) ‖Σ̄`‖ = O(1), tr Σ̄` = O(√p).

(A3) Kernel function: Let f : R+ → R+ 3-times differentiable at τ = 2
p trΣ.

Kernel matrix:
K =

{
f
( 1
p
‖x i − x j‖2

)}n

i,j=1

November 3, 2020 CEA List, CentraleSupélec, University of Paris-Saclay, France



Random Matrix
Theory for AI: From
Theory to Practice

MEA. Seddik

Abstract

Outline

High Dimensionality
Drawbacks
Large Sample Covariance
Matrices

Large Kernel Matrices

RMT Meets ML

Main Contributions
From GMMs to
Concentration through
GANs

Some ML methods under
Concentration

Behavior of Gram
Matrices

Behavior of Kernel
Matrices

Beyond Kernels to Neural
Networks

Conclusions &
Perspectives

Main Contributions/Some ML methods under Concentration 25/41

Main Result: Universality of Kernel Matrices

We still have:
Denote τ ≡ 2

p trΣ. Under (A1-2), with probability 1− δ

max
1≤i 6=j≤n

{∣∣∣ 1p ‖x i − x j‖2 − τ
∣∣∣} = O

(
p−

1
2 log

( p
√
δ

)1/q
)

irrespective of classes of x i and x j .

M = [µ̄1, . . . , µ̄k ] ∈ Rp×k , Z = X −MJᵀ ∈ Rp×n and J = [j1, . . . , jk ] ∈ Rn×k

Theorem (Random Matrix Equivalent for K (STC’19))
Under (A1-3) Taylor expanding K entry-wise leads to

K ≈p f (τ)1n1ᵀn + f ′(τ)
(
ZᵀZ/p + JΦ{µ`}k`=1

Jᵀ
)

+ f ′′(τ)JΦ{Σ`}k`=1
Jᵀ + ∗

Φ{µ`}k`=1
,Φ{Σ`}k`=1

low-rank depending solely on {µ`,Σ`}k`=1.

I K behaves as spiked RMT model.
I Classification performance depends on f ′(τ), f ′′(τ), {µ`,Σ`}k`=1.
I Universality: only first and second order statistics matter!
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Experiments: Spectrum of Kernel Matrices

GAN data

Real data
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Experiments: Spectral Clustering (k-means: GAN data)
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Experiments: Spectral Clustering (k-means: Real data)
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Some ML methods under Concentration

Contribution 4
Implicit Classifiers: The Softmax Classifier

MEA. Seddik, C. Louart, R. Couillet, M. Tamaazousti, “The Unex-
pected Deterministic and Universal Behavior of Large Softmax
Classifiers”, (submitted to) AISTATS’2021.
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Model & Assumptions
(A1) Data matrix (distributed in k classes C1, C2, . . . , Ck):

X =

x1, . . . , xn1︸ ︷︷ ︸
∝Eq1

, xn1+1, . . . , xn2︸ ︷︷ ︸
∝Eq2

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∝Eqk

 ∈ Rp×n

Model statistics: µ` = Ex i∈C`
[x i ], Σ` = Ex i∈C`

[x ixᵀi ]− µ`µ
ᵀ
`

(A2) Growth rate assumptions: As p →∞,
1. p/n→ c ∈ (0,∞).
2. k fixed.
3. ‖µ`‖ = O(1).

The Softmax classifier: Minimize:

L(w1, . . . ,wk) = −
1
n

n∑
i=1

k∑
`=1

yi` log pi` +
1
2

k∑
`=1

λ`‖w`‖2

pi` =
exp(wᵀ

`
x i )∑k

j=1 exp(wᵀ
j x i )

, W ≡ [wᵀ
1 , . . . ,w

ᵀ
k ]ᵀ ∈ Rpk
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Propagation of the Concentration to Softmax

Implicit equation

∇w`L = 0 ⇒ λ`w` = −
1
n

n∑
i=1

(
yi` −

exp(w`ᵀx i )∑k
j=1 exp(w jᵀx i )

)
x i

Equivalently (scalar case for some f : R→ R)

w =
1
n

n∑
i=1

f (wᵀx i )x i ∈ Rp ⇒ w = Ψ(w) ≡
1
n
Xf (Xᵀw)

Contractivity of Ψ
Ψ is requested to be (1− ε)-Lipschitz for some ε > 0 or equivalently

Aw =
{ 1
n
‖f ‖∞‖XXᵀ‖ ≥ 1− ε

}
has low probability.

(A3) ∃ε > 0 independent of p, n s.t. 1
n ‖f ‖∞‖XX

ᵀ‖ ≤ 1− 2ε.

Theorem (Concentration of w (SLCT’20))
Under (A1-3), P(Aw ) ∝ e−n and w ∝ Eq

(
n−

1
2

)
| Aw .
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Estimation of the Weights Statistics (SLCT’20)
Let µw = E[w ] = 1

n
∑n

i=1 E[f (xᵀi w)x i ]

Breaking the Weights-data Dependence
1. Leave-one-data-out: w−i = 1

nX−i f (Xᵀ
−iw−i )

2. Resolvent matrix: Q−i =
(
Ip − 1

nX−iDXᵀ
−i
)−1 with D diagonal

3. Link w and w−i : xᵀi w ≈ xᵀi w−i + 1
n x

ᵀ
i Q−ix i f (xᵀi w)

4. Q−i ↔ Q̄: so 1
n x

ᵀ
i Q−ix i → δ` = 1

n tr (Σ`Q̄)
5. Hence: f (xᵀi w) ≈ f (xᵀi w−i + δ`f (xᵀi w)) = g`(xᵀi w−i )

Stein’s Lemma
1. Gaussianity of z i = xᵀi w−i
2. E[f (xᵀi w)x i ] ≈ E[g`(xᵀi w−i )x i ] ≈ E[g`(zi )]µ` + E[g ′`(zi )]Σ`µw

Similarly with Σw = E[wwᵀ]− µwµwᵀ

⇒ (µw ,Σw ) = Ψ{µ`,Σ`}k`=1
(µw ,Σw )

Universality: only first and second order statistics matter!
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Simulations with MNIST Generated Data

200 400 600

0

0.2

0.4

0.6

0.8

1

C1

C2

C3

n

Accuracy: λ1 = λ2 = λ3 = 30

200 400 600

0

0.2

0.4

0.6

0.8

1

n

λ1 = 10, λ2 = 20, λ3 = 30

Theoretical (test)

Theoretical (train)

Empirical (test)

Empirical (train)

November 3, 2020 CEA List, CentraleSupélec, University of Paris-Saclay, France



Random Matrix
Theory for AI: From
Theory to Practice

MEA. Seddik

Abstract

Outline

High Dimensionality
Drawbacks
Large Sample Covariance
Matrices

Large Kernel Matrices

RMT Meets ML

Main Contributions
From GMMs to
Concentration through
GANs

Some ML methods under
Concentration

Behavior of Gram
Matrices

Behavior of Kernel
Matrices

Beyond Kernels to Neural
Networks

Conclusions &
Perspectives

Main Contributions/Some ML methods under Concentration 34/41

Experimental validation (GAN data)
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Experimental validation (Real data)

0 200 400

−2

0

2

·10−2

Cl
as
s
1

Practical w1
Theoretical w1

0 200 400
−5

0

5
·10−2

Cl
as
s
2

Practical w2
Theoretical w2

0 200 400

−2
0

2

4
·10−2

Weights Index i ∈ [p]

Cl
as
s
3

Practical w3
Theoretical w3

−0.1 0 0.1
−0.10

0.1

−0.1
0

0.1

Practical logits: wᵀ
`
x i

−0.1 0 0.1
−0.10

0.1

−0.1
0

0.1

Theoretical logits (Gaussian)

November 3, 2020 CEA List, CentraleSupélec, University of Paris-Saclay, France



Random Matrix
Theory for AI: From
Theory to Practice

MEA. Seddik

Abstract

Outline

High Dimensionality
Drawbacks
Large Sample Covariance
Matrices

Large Kernel Matrices

RMT Meets ML

Main Contributions
From GMMs to
Concentration through
GANs

Some ML methods under
Concentration

Behavior of Gram
Matrices

Behavior of Kernel
Matrices

Beyond Kernels to Neural
Networks

Conclusions &
Perspectives

Conclusions & Perspectives/ 36/41

Outline

High Dimensionality Drawbacks
Large Sample Covariance Matrices
Large Kernel Matrices
RMT Meets ML

Main Contributions
From GMMs to Concentration through GANs
Some ML methods under Concentration

Behavior of Gram Matrices
Behavior of Kernel Matrices
Beyond Kernels to Neural Networks

Conclusions & Perspectives

November 3, 2020 CEA List, CentraleSupélec, University of Paris-Saclay, France



Random Matrix
Theory for AI: From
Theory to Practice

MEA. Seddik

Abstract

Outline

High Dimensionality
Drawbacks
Large Sample Covariance
Matrices

Large Kernel Matrices

RMT Meets ML

Main Contributions
From GMMs to
Concentration through
GANs

Some ML methods under
Concentration

Behavior of Gram
Matrices

Behavior of Kernel
Matrices

Beyond Kernels to Neural
Networks

Conclusions &
Perspectives

Conclusions & Perspectives/ 37/41

Conclusions & Perspectives

Conclusions
I Concentrated Vectors are very likely appropriate for realistic data

modelling.

I RMT can anticipate performances of ML classifiers for Concentrated
Vectors . . . so for realistic data (so far GAN data).

I Universality of ML classifiers regardless of data distribution.

Perspectives
I Study of non-convex (e.g., deep neural nets) optimization problems.

Learning of two layers networks (Goldt+’20).
What statistics encoded by hidden layers?

I More to be explored with RMT: active and reinforcement learning,
generative models, graph-based methods (GNNs), . . . etc.

I Generalize these ideas to other modalities (NLP?).
For NLP, with RNNs zt = RNN(zt−1,w t−1) with z0 ∼ N (0, Id )?
Word embeddings seem to concentrate (Couillet+’20).
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Thank you for your attention!

Publications
1. MEA.Seddik, C.Louart, R.Couillet, M.Tamaazousti, “The Unexpected

Deterministic and Universal Behavior of Large Softmax Classifiers”, (submitted
to) AISTATS’20.

2. MEA.Seddik, R.Couillet, M.Tamaazousti, “A Random Matrix Analysis of
Learning with alpha-Dropout”, ICML’20 Artemiss Workshop.

3. MEA.Seddik, C.Louart, M.Tamaazousti, R.Couillet, “Random Matrix Theory
Proves that Deep Learning Representations of GAN-data Behave as Gaussian
Mixtures”, ICML’20.

4. MEA.Seddik, M.Tamaazousti, R.Couillet, “Why do Random Matrices Explain
Learning? An Argument of Universality Offered by GANs”, GRETSI’19.

5. MEA.Seddik, M.Tamaazousti, R.Couillet, “Kernel Random Matrices of Large
Concentrated Data: The Example of GAN-generated Images”, ICASSP’19.

6. MEA.Seddik, M.Tamaazousti, R.Couillet, “A Kernel Random Matrix-Based
Approach for Sparse PCA”, ICLR’19.

Other Contributions
1. MEA.Seddik, H.Essafi, A.Benzine, M.Tamaazousti, “Lightweight Neural

Networks from PCA LDA Based Distilled Dense Neural Networks”, ICIP’20.
2. MEA.Seddik, M.Tamaazousti, J.Lin, “Generative Collaborative Networks for

Single Image SuperResolution”, Neurocomputing’19.
+5 patents.
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