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Introduction: Asymmetric Spiked Tensor Model

T
=

x1

x2

x3

Tijk

x1i

x2j

x3k

X
+ Xijkβ x

We consider the following model: (x1 ⊗ x2 ⊗ x3)ijk = x1ix2jx3k

T = βx1 ⊗ · · · ⊗ xd︸ ︷︷ ︸
signal

+
1
√
n

X︸︷︷︸
noise

∈ Rn1×···×nd

where β ≥ 0, ∥xi∥ = 1, Xi1...id
∼ N (0, 1) i.i.d. and n =

∑d

i=1 ni.

▶ Is it possible to recover the signal in theory? for which critical value of β?
▶ What alignment ⟨xi,ui⟩ between the signal and an estimator ui(T)?
▶ Is there an algorithm that can recover the signal in polynomial time?
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Related Works: Symmetric Case

Introduced initially by (Montanari & Richard, 2014)

Y = βx⊗d +
1
√
N

W ∈ RN×···×N

where ∥x∥ = 1 and W has random Gaussian entries and is symmetric.This is a
natural extension of the classical spiked matrix model Y = βxx⊤ + 1√

N
W .

Impossible NP-hard Simple

Statistical  
threshold 

Algorithmic 
threshold 

Other works in the literature include: (Montanari et al., 2015), (Hopkins et al.,
2020), (Kim et al., 2017), (Ben Arous et al., 2019), (Jagannath et al, 2020),
(Perry et al., 2020), (Ros et al., 2020), (Goulart et al., 2021).

Of which Goulart et al. "A random matrix perspective on random tensors",
2021.
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Random Matrix Approach (Goulart et al., 2021)
The optimization problem of maximum likelihood estimator (MLE) for d = 3:

min
λ>0, ∥u∥=1

∥∥Y− λu⊗3
∥∥2

F
⇔ max

∥u∥=1
⟨Y,u⊗ u⊗ u⟩

The critical points satisfy (Lim, 2005):

Y(u,u) = λu ⇔ Y(u)u = λu, ∥u∥ = 1

where (Y(u,u))i =
∑

jk
ujukYijk et (Y(u))ij =

∑
k
ukYijk. The MLE

x̂ corresponds to the dominant eigenvector of Y(x̂) : Y(x̂)x̂ = ∥Y∥x̂.

Hence, the approach from (Goulart et al., 2021) consists in studying:

Y(u) = β⟨x,u⟩xx⊤ +
1
√
N

W(u) ∈ RN×N

Impossible NP-hard Simple

Statistical  
threshold 

Algorithmic 
threshold 

RMT threshold

Local maximum

Paris, 24th November 2022 Workshop on Tensor Theory and Methods
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Tensors Singular Values and Vectors

The optimization problem of MLE for d = 3:

min
λ>0, ∥ui∥=1

∥T− λu1 ⊗ u2 ⊗ u3∥2
F ⇔ max∏3

i=1
∥ui∥=1

⟨T,u1 ⊗ u2 ⊗ u3⟩

The critical points satisfy (Lim, 2005):

T(In1 ,u2,u3) = λu1, T(u1, In2 ,u3) = λu2, T(u1,u2, In3 ) = λu3

where ∥ui∥ = 1 for all i ∈ [3] and (T(In1 ,u2,u3))i =
∑

jk
u2ju3kTijk.

▶ In contrast to the symmetric case, the choice of the associated contraction
matrix is not straightforward. For instance:

T(u3) ≡ T(In1 , In2 ,u3) = β⟨x3,u3⟩x1x⊤
2 +

1
√
n

X(In1 , In2 ,u3) ∈ Rn1×n2

Objectives:
▶ Evaluate the asymptotic limits of λ̂ and ⟨xi, ûi⟩ associated (a priori) to

the MLE when ni →∞.
▶ Define a symmetric random matrix that is equivalent to T.

Paris, 24th November 2022 Workshop on Tensor Theory and Methods
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Associated Random Matrix to T

Stein’s Lemma. Let X ∼ N (0, 1), then E[Xf(X)] = E[f ′(X)].

Recall λ = T(u1,u2,u3) = 1√
n

∑
ijk

u1iu2ju3kXijk + β
∏3

i=1⟨xi,ui⟩.

E[λ] =
1
√
n

∑
ijk

E

[
u2ju3k

∂u1i

∂Xijk

]
+ E

[
u1iu3k

∂u2j

∂Xijk

]
+ E

[
u1iu2j

∂u3k

∂Xijk

]
+ .


∂u1

∂Xijk
∂u2

∂Xijk
∂u3

∂Xijk

 ≃ − 1
√
n


[

0n1×n1 T(u3) T(u2)
T(u3)⊺ 0n2×n2 T(u1)
T(u2)⊺ T(u1)⊺ 0n3×n3

]
︸ ︷︷ ︸

Φ3(T,u1,u2,u3)

− λIn


−1 [

u2ju3ken1
i

u1iu3ken2
j

u1iu2jen3
k

]

The resolvent matrix: R(z) = (Φ3(T,u1,u2,u3)− zIn)−1.
When ni →∞, the non-vanishing terms involve the trace of R(z),

λ+
1
n

tr R(λ) = β

3∏
i=1

⟨xi,ui⟩

Paris, 24th November 2022 Workshop on Tensor Theory and Methods
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Associated Random Matrix to T

For an order-d tensor the associated random matrix is Φd(T,u1, . . . ,ud)
where

Φd : (X,a1, . . . ,ad) 7−→


0n1×n1 X12 X13 · · · X1d

(X12)⊤ 0n2×n2 X23 · · · X2d

(X13)⊤ (X23)⊤ 0n3×n3 . . . X3d

...
...

...
. . .

...
(X1d)⊤ (X2d)⊤ (X3d)⊤ · · · 0nd×nd


with Xij ≡ X(a1, . . . ,ai−1, :,ai+1, . . . ,aj−1, :,aj+1, . . . ,ad) ∈ Rni×nj .

Remark. (d− 1)λ is an eigenvalue of Φd(T,u1, . . . ,ud) with

Φd(T,u1, . . . ,ud)

u1
...

ud

 = (d− 1)λ

u1
...

ud


since

T
(

u1, . . . ,uj−1, Inj ,uj+1, . . . ,ud

)
= λuj

Paris, 24th November 2022 Workshop on Tensor Theory and Methods
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Spectral Measure of Φd(T, u1, . . . , ud)

Stieltjes Transform. The Stieltjes transform of a probability measure ν is
gν(z) =

∫
dν(λ)
λ−z

, z ∈ C \ S(ν).

For S ∈ Symn with λi its eigenvalues and denote its resolvent RS(z) =
(S − zIn)−1, the ESM of S and its associated Stieltjes transform are:

νS =
1
n

n∑
i=1

δλi
, gνS (z) =

1
n

n∑
i=1

1
λi − z

=
1
n

tr RS(z), z ∈ C \ S(νS)

Definition 1. Let ν by the probability measure with Stieltjes transform
g(z) =

∑d

i=1 gi(z) verifying ℑ[g(z)] > 0 for ℑ[z] > 0, where gi(z) satisfies
g2

i (z)− (g(z) + z)gi(z)− ci = 0, for z /∈ S(ν).

Assumption 1. As ni → ∞ with ni∑
j

nj

→ ci ∈ (0, 1), there exists a

sequence of critical points (λ̂, û1, . . . , ûd) s.t. λ̂ and |⟨xi, ûi⟩| converge to
some limits λ /∈ S(ν) and ρi > 0 respectively.

Theorem 1. Under Assumption 1, the ESM of Φd(T, û1, . . . , ûd) converges
weakly to ν defined in Definition 1 (i.e. 1

n
tr R(z) a.s.−→ g(z)).

Paris, 24th November 2022 Workshop on Tensor Theory and Methods
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Spectral Measure of Φd(T, u1, . . . , ud)

Corollary 1. When ci = 1
d

for all i ∈ [d], the ESM of Φd(T, û1, . . . , ûd)

converges to a semi-circle law ν of support
[
−2

√
d−1

d
, 2

√
d−1

d

]
, where

ν(dx) =
d

2(d− 1)π

√(4(d− 1)
d

− x2
)+

, g(z) =
−zd+ d

√
z2 − 4(d−1)

d

2(d− 1)

Figure: Spectrum of Φ3(T, u1, u2, u3) at iterations 0, 5, ∞ of the tensor power iteration
algorithm applied on T. n1 = n2 = n3 = 100 and β = 0.

u1 ←
T(In1 ,u2,u3)
∥T(In1 ,u2,u3)∥

, u2 ←
T(u1, In2 ,u3)
∥T(u1, In2 ,u3)∥

, u3 ←
T(u1,u2, In3 )
∥T(u1,u2, In3 )∥
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Asymptotic Spectral Norm and Alignments

T(x1, û2, û3) = λ̂⟨x1, û1⟩ ⇒︸︷︷︸
Stein

[
λ̂+ g2(λ̂) + g3(λ̂)

]
⟨x1, û1⟩ = β

3∏
i=2

⟨xi, ûi⟩

Assumption 1. As ni → ∞ with ni∑
j

nj

→ ci ∈ (0, 1), there exists a

sequence of critical points (λ̂, û1, . . . , ûd) s.t. λ̂ and |⟨xi, ûi⟩| converge to
some limits λ /∈ S(ν) and ρi > 0 respectively.

Theorem 2. For all d ≥ 3, under Assumption 1, there exists βs > 0 such
that for all β > βs

λ̂
a.s.−→ λ, |⟨xi, ûi⟩|

a.s.−→ qi(λ)

where λ satisfies f(λ, β) = 0 with

f(z, β) = z + g(z)− β
d∏

i=1

qi(z), qi(z) =

√
1−

g2
i (z)
ci

for β ∈ [0, βs], λ is bounded and |⟨xi, ûi⟩|
a.s.−→ 0.

Paris, 24th November 2022 Workshop on Tensor Theory and Methods
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Asymptotic Spectral Norm and Alignments
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Cubic Tensors

Corollary 2. If d = 3 with ci = 1
3 , then for all β > 2

√
3

3
λ̂

a.s.−→

√
β2

2 + 2 +
√

3
√

(3β2−4)3

18β

|⟨xi, ûi⟩|
a.s.−→

√
9β2−12+

√
3
√

(3β2−4)3

β
+

√
9β2+36+

√
3
√

(3β2−4)3

β

6
√

2β

For hyper-cubic tensors of order d, we have

βs =

√
d− 1
d

(
d− 2
d− 1

)1− d
2
, lim

β→βs

ρi(β) =

√
d− 2
d− 1

Paris, 24th November 2022 Workshop on Tensor Theory and Methods
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Spiked Matrix Model

For d = 3, n3 = 1 ⇒ M = βxy⊤ +
1

√
n1 + n2

X ∈ Rn1×n2

Corollary 3. If d = 3 with c1 = c et c2 = 1 − c for c ∈ [0, 1], the spiked
tensor model becomes a spiked matrix model (i.e. c3 = 0).

Let κ(β, c) = β

√
β2(β2+1)−c(c−1)

(β4+c(c−1))(β2+1−c) , for β > βs = 4
√
c(1− c)

λ̂
a.s.−→

√
β2 + 1 +

c(1− c)
β2 , |⟨xi, ûi⟩|

a.s.−→
1

κ(β, ci)
, i ∈ {1, 2}

while for β ∈ [0, βs], λ̂ a.s.−→
√

1 + 2
√
c(1− c) et |⟨xi, ûi⟩|

a.s.−→ 0.
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Decomposition Algorithms and Complexity

min
λ>0, ∥ui∥=1

∥T− λu1 ⊗ · · · ⊗ ud∥2
F ⇒ NP-hard (Hillar et al., 2013)

▶ Tensor unfolding: Mi(T) = βxiy
⊤
i + 1√

n
Mi(X) ∈ R

ni×
∏

j ̸=i
nj .

▶ Using Corollary 3, we find βa =
(∏

i
ni

)1/4
/
√∑

i
ni.

▶ Coincides with O
(
N

d−2
4

)
of (Ben Arous et al, 2021) for ni = N .

▶ Same threshold for tensor power iteration initialized with tensor unfolding
(Auddy et al., 2021).
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Hotteling-type Tensor Deflation

We consider the following rank-r order-d spiked tensor model

T1 =
r∑

i=1

βixi,1 ⊗ · · · ⊗ xi,d +
1
√
n

X ∈ Rn1×···×nd

where βi ≥ 0, ∥xi,j∥ = 1, Xi1...id
∼ N (0, 1) i.i.d. and n =

∑d

i=1 ni.

Tensor Deflation. Compute T2,T3, . . . as

Ti+1 = Ti − λ̂iûi,1 ⊗ · · · ⊗ ûi,d for i ∈ [r]

where λ̂iûi,1 ⊗ · · · ⊗ ûi,d is a critical point of

arg min
λi>0,∥ui,j ∥=1

∥∥Ti − λiui,1 ⊗ · · · ⊗ ui,d

∥∥2
F

Such a critical point satisfy

Ti

(
ûi,1, . . . , ûi,j−1, Inj , ûi,j+1, . . . , ûi,d

)
= λ̂iûi,j

for (i, j) ∈ [r]× [d] with ∥ûi,j∥ = 1.
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Associated Random Matrices

Ti → Φd(Ti, ûi,1, . . . , ûi,d) → Stieltjes transform g(z)

Assumption 2. Assume that as ni →∞
▶ r, d are fixed and ni∑d

j=1
nj

→ ci ∈ (0, 1).

▶ There exists a sequence of critical points (λ̂i, ûi,1, . . . , ûi,d) s.t.
λ̂i

a.s.−→ λi, |⟨xi,k, ûj,k⟩|
a.s.−→ ρijk and |⟨ûi,k, ûj,k⟩|

a.s.−→ ηijk with
λi /∈ S(ν) and ρijk, ηijk > 0.

Theorem 3. Under Assumption 2, the ESM of Φd(Ti, ûi,1, . . . , ûi,d) con-
verges to the deterministic measure ν defined in Definition 1.

When ci = 1
d

for all i, ν describes a semi-circle law of compact support

S(ν) =
[
−2

√
d−1

d
, 2

√
d−1

d

]
, with Stieltjes transform

g(z) =
−zd+ d

√
z2 − 4(d−1)

d

2(d− 1)
, z /∈ S(ν)
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Asymptotic Spectral Norms and Alignments

Let αijk = lim |⟨xi,k,xj,k⟩|, f(z) = z + g(z) and hi(z) = − ci
gi(z) .

Theorem 4. Under Assumption 2, λi, ρijk and ηijk satisfy the following
system of equations

• f(λj) +
j−1∑
i=1

λi

d∏
k=1

ηijk −
r∑

i=1

βi

d∏
k=1

ρijk = 0 , 1 ≤ j ≤ r

• hℓ(λj)ρkjℓ +
j−1∑
i=1

λiρkiℓ

d∏
m̸=ℓ

ηijm −
r∑

i=1

βiαikℓ

d∏
m̸=ℓ

ρijm = 0

1 ≤ ℓ ≤ d, 1 ≤ j, k ≤ r

• hℓ(λj)ηkjℓ + gℓ(λk)
d∏

m̸=ℓ

ηkjm +
j−1∑
i=1

λiηikℓ

d∏
m̸=ℓ

ηijm + . . .

−
r∑

i=1

βiρikℓ

d∏
m ̸=ℓ

ρijm = 0, 1 ≤ ℓ ≤ d, 1 ≤ j < k ≤ r
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Particular case of rank-2 order-3 tensors
For simplicity, let r = 2, d = 3 and n1 = n2 = n3 = N , i.e.

T1 =
2∑

i=1

βixi,1 ⊗ xi,2 ⊗ xi,3 +
1
√
n

X

Denote α = lim |⟨x1,k,x2,k⟩|, η = lim |⟨û1,k, û2,k⟩|, ρij = lim |⟨xi,k, ûj,k⟩|

β = (β1, β2, α)︸ ︷︷ ︸
Parameters

, λ = (λ1, λ2, η)︸ ︷︷ ︸
Measurements

, ρ = (ρ11, ρ12, ρ21, ρ22)︸ ︷︷ ︸
Alignments

Corollary 4. Fixing β, under Assumption 2, λ and ρ satisfy ψ(β,λ,ρ) = 0

ψ(β,λ,ρ) ≡


f(λ1)− β1ρ113 − β2ρ213

h(λ1)ρ11 − β1ρ112 − β2αρ212

h(λ1)ρ21 − β1αρ112 − β2ρ212

f(λ2) + λ1η3 − β1ρ123 − β2ρ223

h(λ2)ρ12 + λ1ρ11η2 − β1ρ122 − β2αρ222

h(λ2)ρ22 + λ1ρ21η2 − β1αρ122 − β2ρ222

h(λ2)η + q(λ1)η2 − β1ρ11ρ122 − β2ρ21ρ222


where h(z) = −1

g(z) and q(z) = z + g(z)
3 .
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Phase Diagram

▶ Solving the three first equations in λ1, ρ11 and ρ21.
▶ Random initialisation, take solutions with ρij ∈ [0, 1] and λ1 > 2

√
2
3 .
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Theory versus Simulation

▶ Fixing β and solving ψ(β,λ,ρ) = 0 in λ and ρ.
▶ Random initialisation, solutions with η, ρij ∈ [0, 1] and λ1, λ2 > 2

√
2
3 .

▶ Simulations with deflation using tensor power iteration initialized with
tensor-SVD on a tensor of shape (50, 50, 50).
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(b) Second deflation step
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▶ Compute λ̂ = (λ̂1, λ̂2, η̂) with deflation and solve ψ(β̂, λ̂, ρ̂) = 0 in β̂, ρ̂.
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Take Away Messages

▶ The RMT approach allows the study of asymmetric spiked tensor models.
▶ The obtained results characterize the performance of the MLE for β large

enough (i.e., β ≥ βc).

Impossible NP-hard Simple

Statistical  
threshold 

Algorithmic 
threshold 

RMT threshold

Local maximum

Open questions:
▶ Still unclear how to characterize the phase transition of the MLE with the

RMT approach.
▶ Is it possible to find a polynomial time algorithm that is consistent below

the computational threshold βa?
▶ Study the existence and uniqueness of the solutions of the deflation case.
▶ Universality and generalization to other higher-rank decomposition

methods.

Thank you for your attention!
melaseddik.github.io
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