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Introduction: Asymmetric Spiked Tensor Model
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Associated Random Matrix
We consider the following model: (1 @ z2 @ ©3);, = T1;@2;73% Asymptotic Spectral Norm

and Alignments

1
T=821® @xg+ — X €RMX XN
N————

n .
signal noise
.. d
where 8 >0, |lz;|| =1, X;,...5, ~N(0,1) ii.d. and n = Ei:l n;. —
~ J Deflation
. . . . . .. Associated Random
P Is it possible to recover the signal in theory? for which critical value of 57 Matrices
Asymptotic Spectral Norms
> What alignment (xz;,u;) between the signal and an estimator u;(T)? and Alignments

P Is there an algorithm that can recover the signal in polynomial time?
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Related Works: Symmetric Case

Introduced initially by (Montanari & Richard, 2014)

1
Y = 8x®d 4 ——wW ¢ RVX XN
N
where ||z|| = 1 and W has random Gaussian entries and is symmetric. This is a
natural extension of the classical spiked matrix model Y = fza | + ﬁW
Impossible NP-hard Simple

Statistical
threshold

IBC = 0(1) Ba - O(N

Algorithmic
threshold

a-2

o)

Other works in the literature include: (Montanari et al., 2015), (Hopkins et al.,
2020), (Kim et al., 2017), (Ben Arous et al., 2019), (Jagannath et al, 2020),

(Perry et al., 2020), (Ros et al., 2020), (Goulart et al., 2021).

Of which Goulart et al. " A random matrix perspective on random tensors",
2021.
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Random Matrix Approach (Goulart et al., 2021)

The optimization problem of maximum likelihood estimator (MLE) for d = 3:

2
min HY—/\u@SH =3 max (Y, u@u® u '
A>0, [lull=1 F llull=1 Y, ) MEA. Seddik
The critical points satisfy (Lim, 2005): paymmelSpses[lensy
Related Works
Yu,u)= u & Ywu=2>, [ul|=1 Random Matrix Approach
where (Y(u,u)), = E]ku]ukY”k et (Y(u)),; Zk uYijk. The MLE
& corresponds to the dominant eigenvector of Y( ) Y(@)z =Yz Tenors Singular Values and
lectors
Associated Random Matrix
Hence, the approach from (Goulart et al., 2021) consists in studying: S e
1 h
Y(u) = Bz, u)ze| + —W(u) € RNV
VN
Local maximum
Impossuble NP-hard Simple Hotteling-type Ter

Deflation

707
i i

RMT threshold /;fm‘is‘rical Algorithmic
—o(1) threshold threshold

Be=0(1) B.=O(N'T)
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Tensors Singular Values and Vectors

The optimization problem of MLE for d = 3:

min [T —Aus @ uz ®U3H% = max
A>0, [lu; =1 H*

i=

(T,u1 ® uz ® u3)

i f=1

The critical points satisfy (Lim, 2005):
T(Iny,uz,u3) = Ay, T(ur, In,,uz) = Aug, T(ur, uz, Ing) = Aus

where ||u;|| =1 for all ¢ € [3] and (T(In,,u2,u3)); = ij u2;uzkTijk -

» In contrast to the symmetric case, the choice of the associated contraction
matrix is not straightforward. For instance:

1
T(u3) = T(Inl aIn27u3) = ﬂ(a@,,u;;}xm:l + ﬁX(L’H >I712:u3) € R™ e

Objectives:

> Evaluate the asymptotic limits of A and (z;, @;) associated (a priori) to
the MLE when n; — co.

» Define a symmetric random matrix that is equivalent to T.
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Associated Random Matrix to T

[ Stein's Lemma. Let X ~ A(0,1), then E[X f(X)] = E[f(X)]. ]
MEA. Seddik
Recall A = T(u1,us,u ULiU2 U3 Xiik + (xq, uq).
( ’ ’ 3 ﬁ Z”}‘ 1it25 43k 2 gk IH H v Z> Asymmetric Spiked Tensor
Model
u " 81,1,2 r 8U3k Related Works
]E[)\ E E U2, Uk aX 4 + E ULiU3L ox J + E U U2; ox J - . Random Matrix Approach
j ijk ijk
l]k) J - J
-1
aul " J’;V:iz:z Singular Values and
~ ) 1
35(J]k 1 0ny xnq T(’u;g) T('LLQ) u2j USke% Associated Random Matrix
X, 2k ~ —— T(u;;)T 07,2 Xng T(ul) — )\In U U3KE - 2 Asyjn};:mhc Spectral Norm
ij and Alignments
duj vn T(u2)T  T(u1)T  Opyxns uljugje,’
OXijk
P3(T,u1,u2,u3)
The resolvent matrix: R(z) = (®3(T,u1,u2,u3) — zI,) L.
When n; — oo, the non-vanishing terms involve the trace of R(z),
Hotteling-type Tensor
Deflation .
3 Associated Random
1 Matrices
)\ + —tr R(A) — ﬁ (wi’ 'Uq,) Aky{n;\rlnnnr Splsr'ml Norms
i=1
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Associated Random Matrix to T

4 1\
For an order-d tensor the associated random matrix is ®4(T,u1,...,uq)
where MEA. Seddik
12 13 1d
Onl an X X o X A Spiked Te
X7 O0pyxng ) G G Model
X13 T X23 T 0 . X3d Related Works
D4 (X,a1,...,aq) — ( ) ( ) n3xXn3 Random Matrix Approach
1d\T 2d\T 3d\T
(XE T (X=X T Ongxng
Tensors Singular Values and
. id n X1 Vectors
with X% EX(al,...,ai_1,17ai+1,...,a]-_l,:,aj+1,...,ad) € R™ix"i, Associated Random Matrix
“ J Asymptotic Spectral Norm

and Alignments

4 A
Remark. (d — 1)\ is an eigenvalue of ®4(T,u1,...,uq) with

ul ul
<I>d(T,u1,...,ud) . :(d—1)>\
. Hotteling-type Tensor
Uy Uug Deflation
Associated Random
i Matrices
since Asymptotic Spectral Norms

and Alignments

T (ul,...,uj,l,Inj,uj+1,...,ud) = )\'LLJ'
\ J
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Spectral Measure of ¢,4(T,uq,...,uy)

4 R
Stieltjes Transform. The Stieltjes transform of a probability measure v is

gu(z) = [ HA e\ Sw).

For S € Sym,, with }); its eigenvalues and denote its resolvent Rg(z) =
(S — zI,) 7!, the ESM of S and its associated Stieltjes transform are:

n

n

1 1 1 1

VS:E g 6>\i:gus(z):£ E No—z :gtrRS(z):ZGC\S(VS)

i=1 i=1

| J

4 )
Definition 1. Let v by the probability measure with Stieltjes transform
g(z) = Zj:l gi(z) verifying S[g(z)] > 0 for S[z] > 0, where g;(z) satisfies
97(2) = (9(2) + 2)gi(2) — ¢; =0, for = ¢ S(v).

| J

4 )

g

Assumption 1. As n; — oo with D — ¢; € (0,1), there exists a
nj
J
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Theorem 1. Under Assumption 1, the ESM of ®4(T, 41, ..
weakly to v defined in Definition 1 (i.e. %tr R(z) % ¢(2)).

.,Ug) converges

| J
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Spectral Measure of ¢,4(T,uq,...,uy)

4 A
Corollary 1. When ¢; = % for all ¢ € [d], the ESM of ®4(T,d1,...,%4)

converges to a semi-circle law v of support [72 %, 2 %} , where MEA. Seddik

Asymmetric Spiked Tensor

Model
( ) d Related Works
v(dx) = Random Matrix Approach
2(d— 1)
4 J
u°, u°, u lls,lls,ll5 ui
0.5+ ]\%v\’ 05-—————— =22 0.5+ 2 Tensors Singular Values and
py—— o Liniting mecaire Limiting messire Lo
=1 Empirical measure == Empirical measure o Linitingspike (4y) ectors
0.4+ 0.4+ 0.4+ == Empirical mmix Associated Random Matrix
. . N Asymptotic Spectral Norm
£03 zo3 | 203 and Alignments
2 2 2
B8 0.2+ 8 0.2- 8 0.2 Spike at 24
0.1 0.1+ 0.1
M
00— F e 00— R 00—,
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Figure: Spectrum of ®3(T, w1, w2, ug) at iterations 0, 5, co of the tensor power iteration AL IR0 U
algorithm applied on T. n; = ny = ng = 100 and 8 = 0. Associated Random
Matrices
Asymptotic Spectral Norms
) and Alignments
T(In,,u2,u3) T(u1, In,, us) T(ui,u2, Ing)
U <~ -7, ug & ——m—————————, uz <& —————————————
T (I, w2, us)l 1T (w1, Ing, us)|l T(u1,uz, Ing)
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Asymptotic Spectral Norm and Alignments

3
T(x1, @2, 03) = Az, 1) =

A+ 920 + 5(V)] (@r,a0) = B [ @i @)

Stein i=2
' )
Assumption 1. As n; — oo with Z’“ — ¢; € (0,1), there exists a
nj
J
sequence of critical points (A, @1, ...,%q) s.t. A and |{x;,@;)| converge to
some limits A ¢ S(v) and p; > 0 respectively.
| J
4 ~\
Theorem 2. For all d > 3, under Assumption 1, there exists 85 > 0 such
that for all 3 > s
AR @i, )| 25 qi(N)
where X satisfies f(X, 8) = 0 with
d
97 (2)
fep) =249 -] [a@. w@=y/1-7=
i=1 '
for 8 € [0, 8s], A is bounded and |(z;, @) 255 0.
| J
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Asymptotic Spectral Norm and Alignments
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Cubic Tensors

Corollary 2. If d = 3 with ¢; = 3, then for all 5 > 2\?

B2 V3 (332 4)
hiac \/ + 2+ — s

p2—4)3

9582 —12+ 9532+36+

623

1 1 1
€1%3.0=35.0=3

T
— 0 dlignment
{xi, up)?
08+ U
£
g £ 06~ &=}
S £ "
£ & i
5 204
S <
&

For hyper-cubic tensors of order d, we have

d—1/d—2\1"%
—, /= (=== .l (B) =
Bs y <d—1) 5%5’”(5)
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Spiked Matrix Model

1
Ford=3,n3=1 = M=8zy +-——xX €RM*"2
Y vni1 +n2
' )
Corollary 3. If d = 3 with ¢; = cet cg =1 — ¢ for ¢ € [0,1], the spiked
tensor model becomes a spiked matrix model (i.e. c3 = 0).
- B2(B241)—c(c—1) , P— —
Let k(B,c) = B Bire(e—1) (710" for 8> Bs = {/c(1l—c)
Loa. C(l - C) a.s. 1
AR B2 1+ L [(mi,a)| 2 —— i€ {1,2}
52 v k(B c;)
while for 8 € [0, 8s], A 25 4 /1 +24/c(1 —¢) et |{m;, @) 255 0.
|\ J
d=2 a=c=1/5c=1-c
1.0
0 . n=Viszvaa-o
§3.5- — =) L 08"
_z 3.0+ éo.b-
§25  mmca-op Soad — Odigment
&20- < 024 B = (c(1 - N (0, )2
15+ 004 — (x2,u)?
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00 05 10 15 20 25 30 35 40

Paris, 24th November 2022

00 05 10 15 20 25 30 35 40

Workshop on Tensor Theory and Methods

MEA. Seddik

Asymmetric Spiked Tensor
Model

Related Works

Random Matrix Approach

Tensors Singular Values and
Vectors

Associated Random Matrix

Asymptotic Spectral Norm
and Alignments

Hotteling-type Tensor
Deflation

Associated Random
Matrices

Asymptotic Spectral Norms
and Alignments



Outline

Decomposition Algorithms and Complexity

Paris, 24th November 2022

Workshop on Tensor Theory and Methods

MEA. Seddik

Asymmetric Spiked T
Model

Related Works

Random Matrix Approach

Tensors Singular Values and
Vectors

Associated Random Matrix

Asymptotic Spectral Norm
and Alignments

Hotteling-type Tensor
Deflation

Associated Random
Matrices

Asymptotic Spectral Norms
and Alignments



Decomposition Algorithms and Complexity

min
A>0, [lu;||=1

IT—Au1 ® - ®@ugl|% = NP-hard (Hillar et al., 2013)

» Tensor unfolding: M;(T) = ﬁzisz + ﬁMz(X) c RniXH]’;ﬁi "

» Using Corollary 3, we find 3, = (HL 71,;)1/4 /A /Zi n;.

d—2
» Coincides with O ( N4~

> Same threshold for tensor power iteration initialized with tensor unfolding

(Auddy et al., 2021).

of (Ben Arous et al, 2021) for n; = N.

in polynomial time

Threshold Bs

Tensor Unfolding ¢-trans
PI or AMP ¢-trans

MLE - theory

Tensor Unfolding - theory

Tensor Unfolding (TU) - simu. |

Power Iteration (PI) - simu.

PT with TU init. - simu.

10 -

i
0.8+ i .
{ .
~_ 06+ :
) Impossible ®  Possiblé
X 04- . =
02- o(1) -

a-1

\ onz) =

00 -

0 1
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Hotteling-type Tensor Deflation

4 )

We consider the following rank-r order-d spiked tensor model

- 1
Ti= Zﬂimz‘,l Q- @mj g+ —=X€RMX XN
: vn
=1
.. d

where B, 2 0, \wi,jH =1, X'led ~ ./\/'(07 1) i.i.d.and n = Zi:l s
|\ J
4 )

Tensor Deflation. Compute T2, Ts,... as

Tit1=Ti =Nt 1 Q- @y q for i€ [r]
where 5\1'111'71 ® - ®1;,q is a critical point of
. 2
arg min ||T,‘*)\¢u¢,1®“'®ui,d”F
Ai>0,lu; jll=1
Such a critical point satisfy
T; (ﬂi,h s i1, Ing s By g, ,ﬂi,d) = S\iﬂi,j

for (i,7) € [r] x [d] with || ;|| = 1.

. J
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Associated Random Matrices

T, — @4(Ti01,...,0,q4) —

Stieltjes transform g(z)

MEA. Seddik

( X ) Asymmetric Spiked Tensor
Assumption 2. Assume that as n; — oo Model
Related Works
> r,d are fixed and —7%+— — ¢; € (0,1). R i A
Zj:l i
> There exists a sequence of critical points (A;, 1;,1,...,%;q) S.t.
EN a.s. a.s. A A a.s. . Tensors Singular Values and
)\i — )\Z', (Ti ks Wi k)| — Pijk and \(ul'k, ug,k>‘ — Nijk with Vectors
i ¢ S(y) and Pijks Mijk > 0. Associated Random Matrix
L ) Asymptotic Spectral Norm
and Alignments
'a )
Theorem 3. Under Assumption 2, the ESM of ®,4(T;, @;,1,...,%; ) con-
verges to the deterministic measure v defined in Definition 1.
. J

When ¢; = é for all 7, v describes a semi-circle law of compact support

— — . Y. Hotteling-type Tensor
Sv) = |:*2 Ldl ,2 %], with Stieltjes transform Dellation
Associated Random
Matrices

Asymptotic Spectral Norms
4(d—1) and Alignments

—zd+dy/ 22 —

2(d—1)

9(2) = s 2¢SW)
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Asymptotic Spectral Norms and Alignments

Let ajp = lim [(@; g, @5 k)|,

J(2) = 2+ g(2) and hi(z) = — 5.

s

Theorem 4. Under Assumption 2, \;, p,;;. and 7;; satisfy the following
system of equations

~

J—1
© FODFD N HnuwZ&H k=01 <7
i=1
j—1
o hy(X /’/quZ/\L/// Hnum Z'Bi IMH =0
me mate
1<e<d1<jk<r
j—1
o ho(Nj)nje + ge(Ax) H Nhejm -‘rzA Nike H'I'{ijm +...
me m#£e
—Zﬁw H/m:o,lseSd,lgxkgr

mel
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Particular case of rank-2 order-3 tensors

For simplicity, let r =2, d =3 and n1 = n2 =n3 = N, i.e.

2
1
T = Zﬁﬂm R xi2 @z 3+ %X
i=1

Denote o = lim (@1 i, T2 )|, 1 = lim [(@7 1, Ba ) lim |(; g, Wj 1)

B = (b1, B2, @),

Parameters

v Pig

A= (A1,A2,m), p=(p11.p12.p21.p22)

Measurements Alignments

4 N\
Corollary 4. Fixing B8, under Assumption 2, X and p satisfy (8, A, p) =0
F1) = Bip11® — Bapai®
h(A1)p11 — Bip112 — Baapor
h(A1)p21 — Brapi1? — Bapor?
¥(B, X p) = FO2) + Mm% = Brp123 — Bapad®
h(A2)pio 4+ Aip1in? — Bipi2? — Baapon?
h(X2)pao 4+ A1po1n? — Brapio? — Papos?
h(X2)n+ q(A1)n? — Brpiipio? — Bapaipos?
where h(z) = g_(zl) and q(z) =z + g(;).
|\ J
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Phase Diagram

> Solving the three first equations in A1, p11 and p21.

» Random initialisation, take solutions with p;; €

A1 p11 = lim{xy, U1) e
-os
o5
04
_____ .
Impossible

Signal Detection

0 00
00 02 o4 08 08 10 00 02 o4 08 08 10
a=lim{xy, x2) a=lim{xy, x2)

A1 p11 = lim(xy, U1) o
o5
05
04
02
00

00 02 04 08 08 10 00 02 04 08 08 10
a=lim(xy, x2) a=lim(xy, x2)
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Theory versus Simulation

> Fixing B and solving ¥(8,\,p) =0 in X and p.

» Random initialisation, solutions with 7, p;; € [0,1] and A1, A2 > 2\/_

> Simulations with deflation using tensor power iteration initialized with

Alignment

tensor-SVD on a tensor of shape (50, 50, 50).

(a) First defiation step

. bl
.l )l
— limifx, )|

— timite, i)l
=== B=10
~- a=070
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(b) Second deflation step
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> Compute A = (5\1, X2, 7)) with deflation
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(c) Estimated singular values
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Take Away Messages

» The RMT approach allows the study of asymmetric spiked tensor models.

» The obtained results characterize the performance of the MLE for 3 large
enough (i.e., 8 > fBc).

Local maximum

Impossible NP-hard Simple

[ 1) Xl 1IN,
W///M% // /L th - g
RMT threshold /;'fﬂﬂs'f‘Cd Algorithmic
o(1) threshold fhr‘gsholdd ,
Be=0(1) B, =0O(N'T)

Open questions:

» Still unclear how to characterize the phase transition of the MLE with the
RMT approach.

> |s it possible to find a polynomial time algorithm that is consistent below
the computational threshold 3,7

> Study the existence and uniqueness of the solutions of the deflation case.

> Universality and generalization to other higher-rank decomposition
methods.

Thank you for your attention!
melaseddik.github.io
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