
LIGHTWEIGHT NEURAL NETWORKS FROM
PCA & LDA BASED DISTILLED DENSE NEURAL NETWORKS

Mohamed El Amine Seddik1,2 Hassane Essafi1 Abdallah Benzine1,3 Mohamed Tamaazousti1

1CEA List, France 2Centralesupélec, France 3Sorbonne University, CNRS, France

ABSTRACT

This paper presents two methods for building lightweight
neural networks with similar accuracy than heavyweight ones
with the advantage to be less greedy in memory and com-
puting resources. So it can be implemented in edge and IoT
devices. The presented distillation methods are respectively
based on Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA). The two methods basically
rely on the successive dimension reduction of a given dense
neural network (teacher) hidden features, and the learning of
a smaller neural network (student) which solves the initial
learning problem along with a mapping problem to the re-
duced successive features spaces. The presented methods are
compared to baselines –learning the student networks from
scratch–, and we show that the additional mapping problem
significantly improves the performance (accuracy, memory
and computing resources) of the student networks.

Index Terms— Teacher-Student Networks, Compres-
sion, Distillation, PCA, LDA, Lightweight Networks

1. INTRODUCTION

Neural networks are the most effective machine learning
methods nowadays, and since they generally require millions
of parameters, their implementation in an IoT environment
is quite ineffective. Indeed, IoT requires machine learning
models with limited amount of parameters since the edge de-
vices have limited resources (computation capacity, storage,
bandwidth,. . .). This requirement among others have trig-
gered intensive research activities and led to the emergence
of new computing paradigms, i.e. edge computing [1] which
has emerged as an answer to the need for shifting the comput-
ing from cloud to decentralized processing units close to the
data sources [2]. The authors in [3] give a survey of works
dealing with machine learning at the network edge. AI at the
edge [4] is a concrete example of leveraging the computing
and storage resources near the places where data is produced.
The authors in [5] present a set of approaches proposed for
embedding deep learning into the edge computing devices.
They also present some applications that can fit with the
edge computing paradigm and can take benefit from the edge
network. However, the accuracy of deep learning models

depends largely on the hyper-parameters of the network in
particularly the number and the size of layers.

Nevertheless, big models are resources consuming which
can impede the embedding of AI technologies in IoT devices
with constrained resources. To tackle this issue some interest-
ing solutions were proposed, model compression was among
the first proposed methods. Model compression methods use
well proved compression techniques for reducing the storage
volume required by neural networks without impacting their
performance. For instance the algorithm presented in [6] is
composed of three methods applied in pipeline: first pruning
(selection of the important weights of the network) method is
applied, followed by quantization and Huffman coding (com-
pression without lost). Compression methods are useful for
reducing the required storage space of network models but in-
efficient for reducing the computation power which is one of
the main critical aspects of the IoT devices. Recent methods
targeting the production of smaller models, with the accuracy
near of lager ones, was investigated [7].

In this article, we present two methods for distilling a
given large dense neural network into a smaller one. The
proposed methods are based on knowledge distillation con-
cept [8], where a large (teacher) pre-trained network is used
to train a smaller (student) network. They have the advantage
to produce models that consume less storage and computing
resources; the knowledge distillation approach is a kind of
transfer learning approach which is commonly used in var-
ious machine learning problems [9, 10]. In [7] the authors
show that the accuracy of the student network model depends
highly on the ratio size between the two network models
(teacher and student), higher is this ratio (gap size between
teacher and student is large), smaller is the accuracy. To al-
leviate this problem the authors suggest, instead of distilling
the student model directly from the teacher model, to use
succession of teacher assistants based knowledge distillation
approach where the models are distilled step by step until ob-
taining the final model. The proposed methods in this paper
are notably complementary to the methods in [6, 7].

In this work, we have investigated two dense neural net-
works distillation methods which are respectively based on
PCA and LDA. In Section 2 we will present the proposed
methods, Section 3 is dedicated to the experiments. We end
this paper by a discussion and a conclusion in Section 4.

2. PROPOSED METHODS

2.1. Setting & Notations

Consider a dense neural network, which we refer to as the
teacher network (TN), composed of L layers and constructed
in the following way, for ` ∈ [L]:

(TN) :

{
h(0) = x ∈ Rp0 ,
h(`) = f`

(
W (`)h(`−1) + b(`)

)
∈ Rp` , (1)

where, x corresponds to the input data features, f` denotes the
`-th layer activation, h(`) stands for the features of x extracted
at layer `, W (`) ∈ Rp`×p`−1 and b(`) ∈ Rp` are respectively
the weight matrix and bias at each layer `. TN is typically of
large size, meaning that the hidden features dimensions p` are
relatively large. In the following, we will present two methods
that construct a small network size, which we refer to as the
student network (SN), based on the TN learned features. The
two methods target different learning problems, depending if
TN solves a supervised problem or an unsupervised one.

2.2. Neural Nets PCA-based Distillation (Net-PCAD)

Given a set of n training samples X = [x1, . . . ,xn] ∈ Rp0×n
on which TN was initially trained to perform some arbitrary
learning task. The Net-PCAD method consists in perform-
ing a PCA [11] at each hidden layer of TN, and then training
a SN to perform the same learning task as TN along with
the task of mapping its hidden features at each layer with
the reduced features of TN. Formally, we denote by H` =

[h
(`)
1 , . . . ,h

(`)
n] ∈ Rp`×n where h

(`)
i stands for the features

of xi at layer `. Therefore, a PCA is performed at each layer
` in order to reduce the dimension of the hidden features p`,
relying on the top k` largest eigenvectors of the sample co-
variance matrix:

C` =
1

n

n∑
i=1

h̄
(`)
i h̄

(`)
i

ᵀ (2)

where h̄
(`)
i = h

(`)
i − 1

n

∑n
j=1 h

(`)
j are the centred hidden

features. We denote by U` ∈ Rp`×k` the matrix containing
the k` largest eigenvectors of C`. Consequently, the student
network (SN) is composed of L layers and has the following
structure:

(SN) :

{
h̃(0) = x ∈ Rp0 ,
h̃(`) = f`

(
W̃ (`)h̃(`−1) + b̃(`)

)
∈ Rk` , (3)

with the convention k0 = p0 and where, x corresponds to the
input data features, h̃(`) stands for the features of x extracted
at layer `, W̃ (`) ∈ Rk`×k`−1 and b̃(`) ∈ Rk` are respectively
the weight matrix and bias at each layer `.

Given the initial learning problem of TN which corre-
sponds to a loss function Lproblem, SN is therefore optimized

Algorithm 1: Net-PCAD description.
Input: A trained teacher network TN, a data matrix

X and the learning problem loss Lproblem.
Output: Trained student network SN.
for `← 1 to L− 1 do

1. Extract the representations H` of X from TN;
2. Compute U` through a PCA on H`;

end
Train the student network SN with L as in equation 4;

with the following loss function, where the Homoscedastic
loss [12] is considered since the optimization problem for SN
can be formulated as a multi-task problem.

L = e−σproblemLproblem + σproblem

+

L−1∑
`=1

e−σ`Lmse(h̃
(`),Uᵀ

` h
(`)) + σ`

(4)

where Lmse denotes the mean squared error loss function,
σproblem and σ`’s are the Homoscedastic loss parameters
which are learned during the training of the student network.
A full description of the Net-PCAD method is provided as a
pseudo-code algorithm in Algorithm 1.

2.3. Neural Nets LDA-based Distillation (Net-LDAD)

If the initial learning problem of the TN is a supervised clas-
sification problem, one can take advantage of the fact that
the data belong to K different classes {Cj}Kj=1 and there-
fore project the hidden features of the TN in structured low-
dimensional spaces. Linear Discriminant Analysis (LDA) is
a dimension reduction technique that specifically reduces the
dimension of data relying on their classes structure [13]. LDA
is closely related to PCA but differs from the latter by the fact
that it explicitly attempts to model the difference between the
classes of the data, while PCA does not take into account
any difference in class labels. Therefore, the idea behind
Net-LDAD is to exploit the labels information layer-wise in
the training of the student network from the teacher network.
Specifically, we compute at each layer ` of the TN the within
class scatter matrix as:

S(`)
w =

K∑
j=1

∑
x∈Cj

(h(`)
x −m

(`)
j)(h(`)

x −m
(`)
j)ᵀ (5)

where h
(`)
x is the representation of x at layer ` of the TN

and m
(`)
j = 1

|Cj |
∑

x∈C| h
(`)
x . And the between class scatter

matrix at each layer ` is given by:

S
(`)
b =

K∑
j=1

|Cj |(m(`)
j −m(`))(m

(`)
j −m(`))ᵀ (6)

Algorithm 2: Net-LDAD description.
Input: A trained teacher network TN, a data matrix

X and the learning problem loss Lproblem.
Output: Trained student network SN.
for `← 1 to L− 1 do

1. Extract the representations H` of X from TN;
2. Compute V` through a LDA on H`;

end
Train the student network SN with L as in equation 7;

where m(`) = 1
n

∑
x∈X h

(`)
x . Therefore, the projection ma-

trix of LDA at each layer ` is computed as the k` largest eigen-
vectors of (S

(`)
w)−1S

(`)
b . We denote by V` ∈ Rp`×k` such a

projection matrix. Similarly to the PCA case, the student net-
work is therefore trained to minimize the following objective:

L = e−σclassificationLclassification + σclassification

+

L−1∑
`=1

e−σ`Lmse(h̃
(`),V ᵀ

` h(`)) + σ`
(7)

where Lclassification is typically a categorical cross entropy loss
function since the initial learning problem of the TN is sup-
posed to be a classification problem. A full description of the
Net-LDAD method is provided as a pseudo-code algorithm in
Algorithm 2.

3. EXPERIMENTS

In this section, we present experiments which highlight
the effectiveness of the proposed methods to train student
networks that are smaller in size w.r.t. a given large size
dense teacher network. In particular, we consider three
teacher networks composed of L = 4 dense layers which
are trained to perform a classification problem respectively
on the datasets MNIST [14], Fashion-MNIST [15] and CI-
FAR10 [16]. Therefore, we train the corresponding student
networks by successively reducing their hidden dimensions
using the presented methods Net-PCAD and Net-LDAD.
Note that, for simplicity, we reduce all the hidden dimensions
to a constant value k and we vary k in all our experiments.

Layer Teacher Student
Dense 1 p0 × 1024 p0 × k
Dense 2 1024× 512 k × k
Dense 3 512× 256 k × k
Dense 4 256× 10 k × 10

Table 1. Architectures of the teacher and student networks.
The dimensions of the weight matrix at each dense layer are
shown for both networks.

Fig. 1. Training loss of the student network when trained us-
ing Net-PCAD (left) and Net-LDAD (right) in terms of the
training epochs, for different values of k, and across three dif-
ferent datasets.

Table 1 presents the considered architectures for the teacher
and student networks.

Figure 1 depicts the training Homoscedastic loss of the
student networks for different values of k and across the dif-
ferent considered datasets using our methods Net-PCAD and
Net-LDAD. Note from this figure that both methods yield
generally to a stable learning of the student networks, and the
classification problem gets much easier as k increases. How-
ever, note that a careful choice of k must be made in order to
get a smooth learning loss (e.g., see k = 200 on the Fashion-
MNIST dataset).

Figure 2 depicts the learned Homoscedastic parameters
once the student networks have been trained for different
values of k. We can observe from this figure (at least for
the datasets MNIST and Fashion-MNIST), that the weight
e−σclassification is much larger than the weights on the hidden
features for the Net-PCAD method, while all weights have
the same order of magnitude for the Net-LDAD method. This
can be interpreted by the fact that LDA finds layer wise a low
dimensional space where data can be classified and therefore
“helps” the classification learning problem. This is not the
case regarding the curves for the CIFAR10 dataset, since it is
a “hard” classification problem given the architecture of the
teacher network (TN gets 45% accuracy).

In terms of the test accuracy, we note from Figure 3 that
learning the students networks with our methods improves

Fig. 2. The learned Homoscedastic loss parameters using
Net-PCAD (left) and Net-LDAD (right) in terms of k and
across three different datasets. The weights corresponding to
the reduced features mapping loss are of the same order of
magnitude for Net-LDAD as the classification loss, which is
a consequence of the fact that LDA is classes dependent.

largely their generalization capacities compared with learn-
ing them from scratch, and one can see that they even surpass
the teacher network on the CIFAR10 dataset. As a summary,
Net-PCAD and Net-LDAD yield to better generalization per-
formances of the student networks as the learning problem
gets harder in the sense of the teacher network test accuracy,
knowing that classifying MNIST is an easy problem (TN gets

Student
Dataset Teacher k = 50 100 200
MNIST 2.23s 0.38s 0.45s 0.65s

98% 97% 97.5% 97.8%
FASHION 2.23s 0.38s 0.45s 0.65s

88% 87.5% 88.5% 88.5%
CIFAR10 4.63s 0.75s 0.92s 1.35s

45% 50% 50.1% 50.3%

Table 2. Forward execution time in seconds (and correspond-
ing test accuracies in %) of the teacher network and the stu-
dent network for different values of k, the forward pass is
applied (on a i7-7700HQ CPU @ 2.80GHz) to the train set of
the respective datasets using a batch size of 50000 images.

Fig. 3. Test accuracy of the student network in orange trained
using Net-PCAD (left) and Net-LDAD (right), and test ac-
curacy of the student network in blue trained from scratch, in
terms of k and across three different datasets. The test accu-
racy of the teacher corresponds to the dashed red lines.

98%), Fashion-MNIST medium (TN gets 88%) while classi-
fying CIFAR10 is a harder learning problem (TN gets 45%).

Table 2 summarizes the performances of the learned stu-
dent networks using the Net-PCAD method1, in terms of the
forward execution time and test accuracy. As we can notice,
Net-PCAD yields to an accurate speedup of inference time
(depending on the choice of k) while not degrading the ac-
curacy of the learned student networks w.r.t. the teacher net-
work and even surpassing the teacher network’s accuracy in
the case of hard classification problems (see CIFAR10).

4. DISCUSSION AND CONCLUSION

The article presented two methods to distillate a given teacher
network (TN) into a student network (SN). Our methods im-
prove the performance of SN compared to learning SN from
scratch and even surpasses TN performances when the learn-
ing problem gets hard, therefore the resulting learned SN is
suited to be implemented in an edge IoT device which re-
quires limited resources. Note that the presented methods
need to setup an hyper-parameter k`. For the lack of space,
this will be addressed in an extended version of the article.

1Net-LDAD gets similar results.

5. REFERENCES

[1] Mahadev Satyanarayanan, “The emergence of edge
computing,” Computer, vol. 50, no. 1, pp. 30–39, 2017.

[2] Ali Alnoman, Shree Krishna Sharma, Waleed Ejaz, and
Alagan Anpalagan, “Emerging edge computing tech-
nologies for distributed iot systems,” IEEE Network,
vol. 33, no. 6, pp. 140–147, 2019.

[3] MG Murshed, Christopher Murphy, Daqing Hou, Nazar
Khan, Ganesh Ananthanarayanan, and Faraz Hussain,
“Machine learning at the network edge: A survey,”
arXiv preprint arXiv:1908.00080, 2019.

[4] Lauri Lovén, Teemu Leppänen, Ella Peltonen, Juha Par-
tala, Erkki Harjula, Pawani Porambage, Mika Ylianttila,
and Jukka Riekki, “Edge ai: A vision for distributed,
edge-native artificial intelligence in future 6g networks,”
The 1st 6G Wireless Summit, pp. 1–2, 2019.

[5] Sahar Voghoei, Navid Hashemi Tonekaboni, Jason G
Wallace, and Hamid R Arabnia, “Deep learning at the
edge,” in 2018 International Conference on Computa-
tional Science and Computational Intelligence (CSCI).
IEEE, 2018, pp. 895–901.

[6] Song Han, Huizi Mao, and William J Dally, “Deep com-
pression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[7] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and
Hassan Ghasemzadeh, “Improved knowledge distilla-
tion via teacher assistant: Bridging the gap between stu-
dent and teacher,” arXiv preprint arXiv:1902.03393,
2019.

[8] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim,
“A gift from knowledge distillation: Fast optimization,
network minimization and transfer learning,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 4133–4141.

[9] Youssef Tamaazousti, Hervé Le Borgne, Céline Hude-
lot, Mohamed El Amine Seddik, and Mohamed Tamaa-
zousti, “Learning more universal representations for
transfer-learning,” IEEE transactions on pattern anal-
ysis and machine intelligence, 2019.

[10] Sara Meftah, Youssef Tamaazousti, Nasredine Semmar,
Hassane Essafi, and Fatiha Sadat, “Joint learning of pre-
trained and random units for domain adaptation in part-
of-speech tagging,” arXiv preprint arXiv:1904.03595,
2019.

[11] Mohamed El Amine Seddik, Mohamed Tamaazousti,
and Romain Couillet, “A kernel random matrix-based
approach for sparse PCA,” in International Conference
on Learning Representations, 2019.

[12] Alex Kendall, Yarin Gal, and Roberto Cipolla, “Multi-
task learning using uncertainty to weigh losses for scene
geometry and semantics,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2018, pp. 7482–7491.

[13] Alaa Tharwat, Tarek Gaber, Abdelhameed Ibrahim, and
Aboul Ella Hassanien, “Linear discriminant analysis: A
detailed tutorial,” AI Commun., vol. 30, pp. 169–190,
2017.

[14] LeCun Yann, Cortes Corinna, and J Christopher,
“The mnist database of handwritten digits,” URL
http://yhann. lecun. com/exdb/mnist, 1998.

[15] Han Xiao, Kashif Rasul, and Roland Vollgraf, “Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[16] Alex Krizhevsky and Geoff Hinton, “Convolutional
deep belief networks on cifar-10,” Unpublished
manuscript, vol. 40, no. 7, pp. 1–9, 2010.

	 Introduction
	 Proposed Methods
	 Setting & Notations
	 Neural Nets PCA-based Distillation (Net-PCAD)
	 Neural Nets LDA-based Distillation (Net-LDAD)

	 Experiments
	 Discussion and Conclusion
	 References

